SIEMENS

SITRANS F

Electromagnetic flowmeters SITRANS FM MAG3100

Operating Instructions

Introduction	1
Safety notes	2
Description	3
Installing/Mounting	4
Connecting	5
Service and maintenance	6
Troubleshooting/FAQs	7
Technical specifications	8
Dimension drawings	9
Product documentation and support	Α
Appendix	В

Sensors 7ME6340 7ME6310 7ME6320

Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

A DANGER

indicates that death or severe personal injury will result if proper precautions are not taken.

🛕 WARNING

indicates that death or severe personal injury may result if proper precautions are not taken.

indicates that minor personal injury can result if proper precautions are not taken.

NOTICE

indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by **personnel qualified** for the specific task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products

Note the following:

🛕 WARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks

All names identified by [®] are registered trademarks of Siemens Aktiengesellschaft. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

Table of contents

1	Introductio	n	5
	1.1	Purpose of this documentation	5
	1.2	Document history	5
	1.3	Checking the consignment	6
	1.4	Items supplied	6
	1.5	Designated use	6
	1.6	Cybersecurity information	7
	1.7	Transportation and storage	8
	1.8	Notes on warranty	8
2	Safety note	۶۰	9
	2.1	Precondition for use	9
	2.2	Warning symbols on the device	9
	2.3	Laws and directives	9
	2.4	Use in hazardous areas	. 14
3	Description		. 17
	3.1	System components	. 17
	3.2	Design	. 18
	3.3	Theory of operation	. 20
4	Installing/M	lounting	. 23
	4.1	Determining a location	. 23
	4.2	Orienting the sensor	. 26
	4.3 4.3.1 4.3.2 4.3.3	Mounting Installation preparation Installing the sensor Torque values	. 28 . 31
	4.4	Potential equalization	. 39
	4.5	Installation with grounding rings	. 41
5	Connecting		. 43
	5.1	General safety requirements	. 43
	5.2	Remote installation	. 45
	5.3	Installation check	. 48
	5.4	Potting	. 49

6	Service and	maintenance	. 51
	6.1	Maintenance	. 51
	6.2	Cleaning	. 51
	6.3	Transportation and storage	. 52
	6.4	Repair	. 52
	6.5	Ordering of spare parts	. 52
7	Troublesho	oting/FAQs	. 55
	7.1	Sensor check	. 55
	7.2	Fluctuating process values	. 56
8	Technical s	pecifications	. 59
	8.1	Certificates and approvals	. 63
	8.1.1 8.1.2	Hazardous area approvals and certificates Electrical specifications	
	8.1.3	Temperature specifications for use in hazardous areas	
	8.1.4	Specific conditions of use	
	8.2	Cable data	. 71
	8.3	Pressure / temperature range	. 72
	8.4	Process fluid conductivity	. 73
	8.5	Liner selection	. 74
	8.6	Electrode selection	. 74
9	Dimension	drawings	. 77
	9.1	Dimensions and weight	. 77
Α	Product doo	cumentation and support	. 87
	A.1	Product documentation	. 87
	A.2	Technical support	. 88
В	Appendix		. 89
	Index		. 93

Introduction

1.1 Purpose of this documentation

These instructions contain all information required to commission and use the device. Read the instructions carefully prior to installation and commissioning. In order to use the device correctly, first review its principle of operation.

The instructions are aimed at persons mechanically installing, connecting and commissioning the device, as well as service and maintenance engineers.

1.2 Document history

The contents of these instructions are regularly reviewed and corrections are included in subsequent editions. We welcome all suggestions for improvement.

The following table shows the most important changes in the documentation compared to each previous edition.

Edition	Remarks						
07/2024	Update of Certificates and approvals and Use in hazardous area						
03/2023	Update to include new DN2200 variant						
12/2021	Update to include new DN32 variant and Class 600 flanges:						
	Updated PED table						
	Updated process connection table						
	Updated dimensions and weights table						
	Updated coil resistance table						
09/2021	Updated nameplate						
	Updated safety notes						
	Updated remote installation						
	Updated technical specifications						
	Updated coil resistance table						
	Updated torque values						
09/2012	Updated temperature specifications						
	Updated coil resistance table						

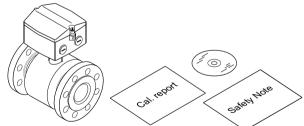
Introduction

1.5 Designated use

Edition	Remarks						
12/2011	General update						
	Updated ATEX approval						
06/2010	First edition						
	The Operating Instruction replaces:						
	MAG 3100 part of SITRANS F M HANDBOOK						
	MAG 3100 part of SITRANS F M MAG 6000 I Ex d Operating Instructions						
	• MAG 3100 part of SITRANS F M MAG 6000 19" & Safety Barrier Operating Instructions						
	MAG 3100 Instructions						
	MAG 3100 with PTFE and PFA liners Instructions						

1.3 Checking the consignment

- 1. Check the packaging and the delivered items for visible damages.
- 2. Report any claims for damages immediately to the shipping company.
- 3. Retain damaged parts for clarification.
- 4. Check the scope of delivery by comparing your order to the shipping documents for correctness and completeness.


Using a damaged or incomplete device

Risk of explosion in hazardous areas.

• Do not use damaged or incomplete devices.

1.4 Items supplied

- SITRANS FM MAG3100
- Calibration report
- Siemens Process Instrumentation documentation disk containing certificates, and manuals
- Safety note

1.5 Designated use

Use the device in accordance with the information on the nameplate and in the Technical specifications (Page 59).

NOTICE

Use in a domestic environment

This Class A Group 1 equipment is intended for use in industrial areas.

In a domestic environment this device may cause radio interference.

1.6 Cybersecurity information

Siemens provides products and solutions with industrial cybersecurity functions that support the secure operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial cybersecurity concept. Siemens' products and solutions constitute one element of such a concept.

Customers are responsible for preventing unauthorized access to their plants, systems, machines and networks. Such systems, machines and components should only be connected to an enterprise network or the internet if and to the extent such a connection is necessary and only when appropriate security measures (e.g. firewalls and/or network segmentation) are in place.

For additional information on industrial cybersecurity measures that may be implemented, please visit

https://www.siemens.com/cybersecurity-industry.

Siemens' products and solutions undergo continuous development to make them more secure. Siemens strongly recommends that product updates are applied as soon as they are available and that the latest product versions are used. Use of product versions that are no longer supported, and failure to apply the latest updates may increase customer's exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Cybersecurity RSS Feed under

https://new.siemens.com/cert.

1.8 Notes on warranty

1.7 Transportation and storage

To guarantee sufficient protection during transport and storage, observe the following:

- Keep the original packaging for subsequent transportation.
- Devices/replacement parts should be returned in their original packaging.
- If the original packaging is no longer available, ensure that all shipments are properly packaged to provide sufficient protection during transport. Siemens cannot assume liability for any costs associated with transportation damages.

NOTICE

Insufficient protection during storage

The packaging only provides limited protection against moisture and infiltration.

• Provide additional packaging as necessary.

Special conditions for storage and transportation of the device are listed in Technical specifications (Page 59).

1.8 Notes on warranty

The contents of this manual shall not become part of or modify any prior or existing agreement, commitment or legal relationship. The sales contract contains all obligations on the part of Siemens as well as the complete and solely applicable warranty conditions. Any statements regarding device versions described in the manual do not create new warranties or modify the existing warranty.

The content reflects the technical status at the time of publishing. Siemens reserves the right to make technical changes in the course of further development.

Safety notes

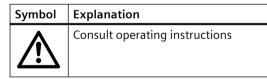
2.1 Precondition for use

This device left the factory in good working condition. In order to maintain this status and to ensure safe operation of the device, observe these instructions and all the specifications relevant to safety.

Observe the information and symbols on the device. Do not remove any information or symbols from the device. Always keep the information and symbols in a completely legible state.

Correct, reliable operation of the product requires proper transport, storage, positioning and assembly as well as careful operation and maintenance.

Only qualified personnel should install or operate this instrument.


Note

Alterations to the product, including opening or improper modifications of the product are not permitted.

If this requirement is not observed, the CE mark and the manufacturer's warranty will expire.

If the equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

2.2 Warning symbols on the device

2.3 Laws and directives

Observe the safety rules, provisions and laws applicable in your country during connection, assembly and operation. These include, for example:

- National Electrical Code (NEC NFPA 70) (USA)
- Canadian Electrical Code (CEC Part I) (Canada)

2.3 Laws and directives

Further provisions for hazardous area applications are for example:

- IEC 60079-14 (international)
- EN 60079-14 (EU and UK)

Instrument safety standards

The device has been tested at the factory, based on the safety requirements. In order to maintain this condition over the expected life of the device the requirements described in these Operating Instructions must be observed.

NOTICE

Material compatibility

Siemens Flow Instruments can provide assistance with the selection of wetted sensor parts. However, the full responsibility for the selection rests with the customer and Siemens Flow Instruments can take no responsibility for any failure due to material incompatibility.

Conformity with European directives

The product described in this document is in conformity with the relevant harmonization legislation, and its amendments, of the European Union.

Electromagnetic compatibili- ty directive EMC 2014/30/EU	Directive of the European Parliament and of the Council on the harmonisation of the laws of the Member States relating to electromagnetic compatibility
Low voltage directive LVD 2014/35/EU	Directive of the European Parliament and of the Council on the harmonisation of the laws of the Member States relating to the making available on the market of electrical equipment designed for use within certain voltage limits
Explosive atmospheres direc- tive ATEX 2014/34/EU	Directive of the European Parliament and the Council on the har- monisation of the laws of the Member States relating to equip- ment and protective systems intended for use in potentially ex- plosive atmospheres
Pressure equipment direc- tive PED 2014/68/EU	Directive of the European Parliament and of the Council on the harmonisation of the laws of the Member States relating to the making available on the market of pressure equipment
Restriction of hazardous sub- stances directive RoHS 2011/65/EU	Directive of the European Parliament and the Council on the re- striction of the use of certain hazardous substances in electrical and electronic equipment

The applicable directives can be found in the EU Declaration of Conformity of the specific device.

Compliance with PED directive

"Pressure Equipment Directive" (PED) is mandatory for all pressure equipment sold within the EU and EFTA.

Siemens Flow Instruments products comply with PED as stated in the following table.

Table 2-1 MAG3100 (7ME631) PED Compliance for fluids under 100 °C (PED classification: liquids) EN 1092 and B16.5 flanges

Flange				EN 1092					B16.5	
mm	PN 6	PN 10	PN 16	PN25	PN 40	PN 63	PN 100	Class 150	Class 300	Class 600
15	N/A	N/A	N/A	N/A	SEP	N/A	N/A	SEP	SEP	N/A
25	N/A	N/A	N/A	N/A	SEP	N/A	SEP	SEP	SEP	SEP
32	N/A	N/A	N/A	N/A	SEP	N/A	PED (II)	SEP	SEP	PED (II)
40	N/A	N/A	N/A	N/A	SEP	N/A	PED (II)	SEP	PED (II)	PED (II)
50	N/A	N/A	N/A	N/A	SEP	PED (II)	PED (II)	SEP	PED (II)	PED (II)
65	SEP	N/A	SEP	N/A	PED (II)	PED (II)	PED (II)	SEP	PED (II)	PED (II)
80	SEP	N/A	SEP	N/A	PED (II)	PED (II)	PED (II)	SEP	PED (II)	PED (II)
100	SEP	N/A	SEP	N/A	PED (II)	PED (II)	PED (II)	SEP	PED (II)	PED (II)
125	SEP	N/A	SEP	N/A	PED (II)	PED (II)	PED (II)	PED (II)	PED (II)	PED (II)
150	SEP	N/A	PED (II)	N/A	PED (II)	PED (II)	PED (II)	PED (II)	PED (II)	PED (II)
200	SEP	SEP	PED (II)	PED (II)	PED (II)	PED (II)	PED (II)	PED (II)	PED (II)	PED (II)
250	SEP	PED (I)	PED (II)	PED (II)	PED (II)	PED (II)	PED (II)	PED (II)	PED (II)	PED (II)
300	SEP	PED (I)	PED (II)	PED (II)	PED (II)	PED (II)	PED (II)	PED (II)	PED (II)	PED (II)
350	PED (I)	PED (I)	PED (II)	PED (II)	PED (II)	N/A	N/A	PED (II)	PED (II)	PED (II)
400	PED (I)	PED (I)	PED (II)	PED (II)	PED (II)	N/A	N/A	PED (II)	PED (II)	PED (II)
450	PED (I)	PED (I)	PED (II)	PED (II)	PED (II)	N/A	N/A	PED (II)	PED (II)	N/A
500	PED (I)	PED (I)	PED (II)	PED (II)	PED (II)	N/A	N/A	PED (II)	PED (II)	N/A
600	PED (I)	PED (I)	PED (II)	PED (II)	PED (II)	N/A	N/A	PED (II)	PED (II)	N/A
700	PED (I)	PED (I)	PED (II)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
750	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
800	PED (I)	PED (I)	PED (II)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
900	PED (I)	PED (I)	PED (II)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1000	PED (I)	PED (I)	PED (II)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1050	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1200	PED (I)	PED (I)	PED (II)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1400	PED (I)	PED (I)	PED* (II)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1500	PED (I)	PED (I)	PED* (II)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1600	PED (I)	PED (I)	PED* (II)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1800	PED (I)	PED (I)	PED* (II)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2000	PED (I)	PED (I)	PED* (II)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2200	PED (I)	PED (I)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Safety notes

2.3 Laws and directives

Table 2-2MAG3100 (7ME631) PED Compliance for fluids under 100 °C (PED classification: liquids) JIS2220, AS2129,
AS4087, AWWA C207 flanges

Flange mm	JIS2	220	AS2129		AS4087		AWWA C20
-	10K / E	20K	Table E	class16 (AS16)	class21 (AS21)	class35 (AS35)	Class D
15	SEP	SEP	SEP	N/A	N/A	N/A	N/A
25	SEP	SEP	SEP	N/A	N/A	N/A	N/A
32	SEP	SEP	SEP	N/A	N/A	N/A	N/A
40	SEP	SEP	SEP	N/A	N/A	N/A	N/A
50	SEP	SEP	SEP	SEP	SEP	SEP	N/A
65	SEP	PED (II)	SEP	SEP	SEP	SEP	N/A
80	SEP	PED (II)	SEP	SEP	SEP	SEP	N/A
100	SEP	PED (II)	SEP	SEP	SEP	SEP	N/A
125	SEP	PED (II)	SEP	N/A	N/A	N/A	N/A
150	PED (II)	PED (II)	PED (II)	SEP	SEP	SEP	N/A
200	PED (II)	PED (II)	PED (II)	SEP	SEP	SEP	N/A
250	PED (II)	PED (II)	PED (II)	SEP	PED (I)	PED (I)	N/A
300	PED (II)	PED (II)	PED (II)	SEP	PED (I)	PED (I)	N/A
350	PED (II)	PED (II)	PED (II)	PED (I)	PED (I)	PED (I)	N/A
400	PED (II)	PED (II)	PED (II)	PED (I)	PED (I)	PED (I)	N/A
450	PED (II)	PED (II)	PED (II)	PED (I)	PED (I)	PED (I)	N/A
500	PED (II)	PED (II)	PED (II)	PED (I)	PED (I)	PED (I)	N/A
600	PED (II)	PED (II)	PED (II)	PED (I)	PED (I)	PED (I)	N/A
700	N/A	N/A	PED (II)	PED (I)	N/A	N/A	PED (I)
750	N/A	N/A	PED (II)	N/A	N/A	N/A	PED (I)
800	N/A	N/A	PED (II)	PED (I)	N/A	N/A	PED (I)
900	N/A	N/A	PED (II)	PED (I)	N/A	N/A	PED (I)
1000	N/A	N/A	PED (II)	PED (I)	N/A	N/A	PED (I)
1050	N/A	N/A	N/A	N/A	N/A	N/A	PED (I)
1100	N/A	N/A	N/A	N/A	N/A	N/A	PED (I)
1200	N/A	N/A	PED (II)	PED (I)	N/A	N/A	PED (I)
1400	N/A	N/A	N/A	N/A	N/A	N/A	PED (I)
1500	N/A	N/A	N/A	N/A	N/A	N/A	PED (I)
1600	N/A	N/A	N/A	N/A	N/A	N/A	PED (I)
1800	N/A	N/A	N/A	N/A	N/A	N/A	PED (I)
2000	N/A	N/A	N/A	N/A	N/A	N/A	PED (I)
2200	N/A	N/A	N/A	N/A	N/A	N/A	PED (I)

2.3 Laws and directives

	EN ²	1092		B1	AS2129	
PN 10	PN 16	PN25	PN 40	Class 150	Class 300	Table E
N/A	N/A	N/A	SEP	SEP	SEP	SEP
N/A	N/A	N/A	SEP	SEP	SEP	SEP
N/A	N/A	N/A	PED (II)	PED (I)	PED (II)	PED (I)
N/A	N/A	N/A	PED (II)	PED (I)	PED (II)	PED (I)
N/A	N/A	N/A	PED (II)	PED (I)	PED (II)	PED (I)
N/A	PED (II)	N/A	PED (II)	PED (II)	PED (II)	PED (I)
N/A	PED (II)	N/A	PED (II)	PED (II)	PED (II)	PED (II)
N/A	PED (II)	N/A	PED (II)	PED (II)	PED (II)	PED (II)
N/A	PED (II)	N/A	PED (III)	PED (II)	PED (III)	PED (II)
N/A	PED (II)	N/A	PED (III)	PED (II)	PED (III)	PED (II)
PED (II)	PED (II)	PED (III)	PED (III)	PED (III)	PED (III)	PED (II)
PED (II)	PED (III)	PED (III)	PED (III)	PED (III)	PED (III)	PED (II)
PED (II)	PED (III)	PED (III)	PED (III)	PED (III)	PED (III)	PED (III)
	N/A N/A N/A N/A N/A N/A N/A N/A N/A PED (II) PED (II)	PN 10 PN 16 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A PLD (II) N/A PED (II) N/A PED (II) N/A PED (II) N/A PED (II) PED (II) PED (II) PED (II) PED (II) PED (II) PED (II)	N/A N/A N/A N/A PED (II) N/A PED (II) PED (III) N/A PED (II) PED (III) N/A PED (II) PED (III) PED (III) PED (II) PED (III) PED (III)	PN 10 PN 16 PN25 PN 40 N/A N/A N/A SEP N/A N/A N/A SEP N/A N/A N/A SEP N/A N/A N/A SEP N/A N/A N/A PED (II) N/A N/A N/A PED (II) N/A N/A N/A PED (II) N/A PED (II) N/A PED (III) N/A PED (II) PED (III) PED (III) PED (II) PED (III) PED (III) PED (III) PED (II) PED (III) PED (III) PED (III)	PN 10 PN 16 PN25 PN 40 Class 150 N/A N/A N/A SEP SEP N/A N/A N/A SEP SEP N/A N/A N/A SEP SEP N/A N/A N/A PED (II) PED (I) N/A N/A N/A PED (II) PED (I) N/A N/A N/A PED (II) PED (I) N/A N/A N/A PED (I) PED (I) N/A PED (II) N/A PED (II) PED (II) N/A PED (II) N/A PED (III) PED (III) PED (II)	PN 10 PN 16 PN25 PN 40 Class 150 Class 300 N/A N/A N/A SEP SEP SEP N/A N/A N/A SEP SEP SEP N/A N/A N/A SEP SEP SEP N/A N/A N/A PED (II) PED (I) PED (II) N/A N/A N/A PED (II) PED (II) PED (II) N/A N/A N/A PED (II) PED (II) PED (II) N/A N/A N/A PED (II) PED (II) PED (II) N/A PED (II) N/A PED (II) PED (II) PED (II) N/A PED (II) N/A PED (II) PED (II) PED (II) N/A PED (II) N/A PED (II) PED (II) PED (III) N/A PED (II) N/A PED (III) PED (III) PED (III) N/A PED (II) N/A PED (III) PED (III) <td< td=""></td<>

 Table 2-3
 MAG3100HT (7ME632) PED Compliance for fluids over 100 °C (PED classification: gas)

 Table 2-4
 MAG3100P (7ME634) PED Compliance for fluids over 100 °C (PED classification: gas)

Flange mm		B16.5		
-	PN 10	PN 16	PN 40	Class 150
15	N/A	N/A	SEP	SEP
25	N/A	N/A	SEP	SEP
32	N/A	N/A	PED (II)	PED (I)
40	N/A	N/A	PED (II)	PED (I)
50	N/A	N/A	PED (II)	PED (I)
65	N/A	PED (II)	N/A	PED (II)
80	N/A	PED (II)	N/A	PED (II)
100	N/A	PED (II)	N/A	PED (II)
125	N/A	PED (II)	N/A	PED (II)
150	N/A	PED (II)	N/A	PED (II)
200	PED (II)	PED (II)	N/A	PED (III)
250	PED (II)	PED (III)	N/A	PED (III)
300	PED (II)	PED (III)	N/A	PED (III)

SEP	Product covered by PED under category SEP (Sound Engineering Practice)
PED	Product covered by PED under category I to III as fully PED-conforming
PED*	Product available without full PED compliance (only pressure test not done)
N/A	Size/pressure not available in the size range

2.4 Use in hazardous areas

All products sold outside of EU and EFTA are excluded from the Pressure Equipment directive, also products sold into certain market sectors are excluded. These include

- 1. Meters used in networks for the supply, distribution and discharge of water.
- 2. Meters used in pipelines for the conveyance of any fluid from offshore to onshore.
- 3. Meters used in the extraction of petroleum or gas, including christmas tree and manifold equipment.
- 4. Any meter mounted on a ship or mobile offshore platform.

2.4 Use in hazardous areas

Qualified personnel for hazardous area applications

Persons who install, connect, commission, operate, and service the device in a hazardous area must have the following specific qualifications:

- They are authorized, trained or instructed in operating and maintaining devices and systems according to the safety regulations for electrical circuits, high pressures, aggressive, and hazardous media.
- They are authorized, trained, or instructed in carrying out work on electrical circuits in hazardous areas.
- They are trained or instructed in maintenance and use of appropriate safety equipment according to the pertinent safety regulations.

Use in hazardous area

Risk of explosion.

- Only use equipment that is approved for use in the intended hazardous area and labeled accordingly.
- Do not use devices that have been operated outside the conditions specified for hazardous areas. If you have used the device outside the conditions for hazardous areas, make all Ex markings unrecognizable on the nameplate.

Loss of safety of device with type of protection "Intrinsic safety Ex i"

If the device or its components have already been operated in non-intrinsically safe circuits or the electrical specifications have not been observed, the safety of the device is no longer ensured for use in hazardous areas. There is a risk of explosion.

- Connect the device with type of protection "Intrinsic safety" solely to an intrinsically safe circuit.
- Observe the specifications for the electrical data on the certificate and/or in Technical specifications (Page 59).

🛕 WARNING

Equipment used in hazardous areas

Equipment used in hazardous areas must be Ex-approved for the region of installation and marked accordingly. It is required that the special conditions for safe use provided in the manual and in the Ex certificate are followed!

Laying of cables

Risk of explosion in hazardous areas.

Cable for use in hazardous areas must satisfy the requirements for having a proof voltage of at least 500 V AC applied between the conductor/ground, conductor/shield and shield/ground.

Connect the devices that are operated in hazardous areas as per the stipulations applicable in the country of operation.

With intrinsically safe circuits, use only certified meters appropriate for the transmitter.

If a non-conforming supply unit is used, the "fail-safe" type of protection will no longer be effective and the approval certification will be invalid.

Use interface sealing gasket in dust explosion hazardous area

When the equipment is installed in dust explosion hazardous area the cable entry devices shall be fitted with interface sealing gasket.

2.4 Use in hazardous areas

Non-flammable media only

All approvals are based on non-flammable processes only!

Risk of explosion.

Ensure that there is no explosive or flammable gas inside the pipe during process or maintenance.

Potential equalization

In operation, the output is earthed through the conductive medium being measured and therefore potential equalization is necessary throughout the hazardous area.

The apparatus housing shall be connected to the potential equalizing conductor in the hazardous area.

See also

Certificates (http://www.siemens.com/processinstrumentation/certificates)

Opening device in energized state

Risk of explosion in hazardous areas

- Only open the device in a de-energized state.
- Check prior to commissioning that the cover, cover locks, and cable inlets are assembled in accordance with the directives.

Description

The main applications of the SITRANS FM electromagnetic flow sensors can be found in the following fields:

- Process industry
- Chemical industry
- Steel industry
- Mining
- Utility
- Power generation & distribution
- Oil & gas / HPI
- Water & waste water
- Pulp & paper

3.1 System components

The SITRANS FM flowmeter system includes:

- Transmitter (types: SITRANS FM MAG5000/6000 or MAG6000I)
- Sensor (types: SITRANS FM MAG1100/1100F, MAG3100/3100P or MAG5100W)
- Communication module (optional) (types: HART, PROFIBUS PA/DP, MODBUS RTU RS 485, Foundation Fieldbus H1, Devicenet)
- SENSORPROM memory unit

Communication solutions

The SITRANS FM range of add-on modules, presently including HART, Foundation Fieldbus. MODBUS RTU RS 485, PROFIBUS PA / DP and Devicenet, are all applicable with the SITRANS FM MAG 6000 transmitter. 3.2 Design

3.2 Design

SITRANS FM MAG3100 is available in a wide range of sizes (DN 15 to DN 2200 ($\frac{1}{2}$ " to 88")) and pressure ratings (PN 6 to PN 100 / ANSI Class 150 / 300 / 600, AS 2129 / AS 4087 - on request up to 690 bar (10 000 psi)). The fully welded construction provides a ruggedness that suits the toughest applications and environments.

Sensor housing and flanges are designed in carbon steel (ASTM A 105) and terminal box in fibre glass reinforced polyamide or optionally in stainless steel (AISI 316). Measuring pipe is made of stainless steel (AISI 304) while liners and electrodes are available in various material, which makes the sensor highly resistant to a wide range of chemicals.

The present range of liner types includes:

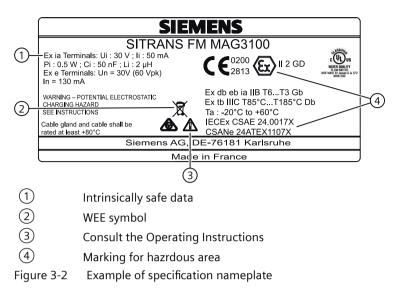
- PTFE
- PFA
- Soft rubber
- EPDM
- Linatex
- Ebonite Hard Rubber

Electrodes are available in:

- Hastelloy C276 or C22
- AISI 316Ti (1.4571)
- Platinum / Iridium
- Titanium
- Tantalum
- Ceramic coated AISI 36Ti
- Ceramic coated Hastelloy C276

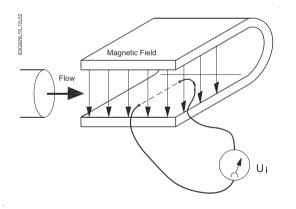
The sensors carry a wide range of approvals, see Technical specifications (Page 59).

Inspection


- 1. Check for mechanical damage due to possible improper handling during shipment. All claims for damage are to be made promptly to the shipper.
- 2. Make sure the scope of delivery, and the information on the nameplate corresponds to the ordering information.

\bigcirc 2 SIEMENS 3 SITRANS FM MAG3100 (10) (4)Order No : 7ME63104PC121BA3 MAWP (PS) at -10°C/14°F: 16bar/232ps 61 888888H888 14.8bar/214psi Serial No.: MAWP (PS) at 70°C/158°F: (5) Size DN: 200 (8 inch.) Lining: EPDM T.media min.: -10°C/14°F ſ12) 70°C/158°F (6)Sensor material: ASTM A 105 T.media max.: Electrodes: ANSI 316 Ti / 1.4571 Process connection: EN 1092-1,PN16 (13) (7) Cal. factor: 2024 (14) Fluid group: PED/Gr.1 Input 60V max. 0.125A max. (8) Siemens AG, DE-76181 Karlsruhe (15) Made in France 9 (1) Manufacturer (9) Fluid group (2) Product name (10) Maximum allowable pressure (3) Order number (11) Minimum media temperature 4 Serial Number (S/N) (12) Maximum media temperature (5) Size and liner type (13)Process connection (14) (6) Sensor material Year of manufacturer (7) Electrode material (15) Power supply (8) Calibration factor Figure 3-1 Example of product nameplate

MAG3100 sensor identification nameplate


3.3 Theory of operation

MAG3100 sensor specification nameplate

3.3 Theory of operation

The flow measuring principle is based on Faraday's law of electromagnetic induction.

 U_i = When an electrical conductor of length L is moved at velocity v, perpendicular to the lines of flux through a magnetic field of strength B, the voltage U_i is induced at the ends of the conductor

$U_i = L x B x v$

- U_i = Induced voltage
- L = Conductor length = Inner pipe diameter = k₁
- B = Magnetic field strength = k₂
- v = Velocity of conductor (media)
- $k = k_1 \times k_2$

$U_i = k \times v$, the electrode signal is directly proportional to the fluid velocity

Operating principle

The transmitter generates a pulsating magnetizing current that drives the coils in the sensor. The current is permanently monitored and corrected. Errors or cable faults are registered by the self-monitoring circuit.

The input circuit amplifies the flow-proportional induced voltage signal from the electrodes. The input impedance is extremely high: >10¹⁴ Ω which allows flow measurements on fluids with conductivities as low as 5 µS/cm. Measuring errors due to cable capacitance are eliminated due to active cable screening.

The digital signal processor converts the analog flow signal to a digital signal and suppresses electrode noise through a digital filter. Inaccuracies in the transmitter as a result of long-term drift and temperature drift are monitored and continuously compensated for via the self-monitoring circuit. The analog to digital conversion takes place in an ultra low noise ASIC with 23 bit signal resolution. This has eliminated the need for range switching. The dynamic range of the transmitter is therefore unsurpassed with a turn down ratio of minimum 3000:1.

Description

3.3 Theory of operation

Installing/Mounting

SITRANS F flowmeters with minimum IP65/Type 4X enclosure rating are suitable for indoor and outdoor installations.

• Make sure that pressure and temperature specifications indicated on the device nameplate / label will not be exceeded.

Installation in hazardous location

Special requirements apply to the location and interconnection of sensor and transmitter. See Use in hazardous areas (Page 14)

High pressure hazard

In applications with working pressures/media that can be dangerous to people, surroundings, equipment or others in case of pipe fracture, we recommend that special precautions such as special placement, shielding or installation of a pressure guard or a safety valve are taken when the flowmeter is mounted.

4.1 Determining a location

Note

The sensor must always be completely filled with liquid.

Figure 4-1 Correct installation with filled pipes

4.1 Determining a location

- Avoid the following installations
 - Installation at the highest point in the pipe system
 - Installation in vertical pipes with free outlet

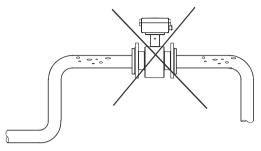


Figure 4-2 Wrong installation at high point

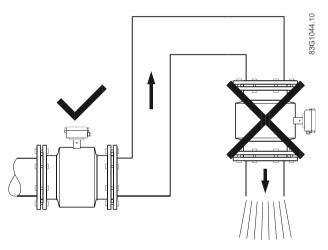
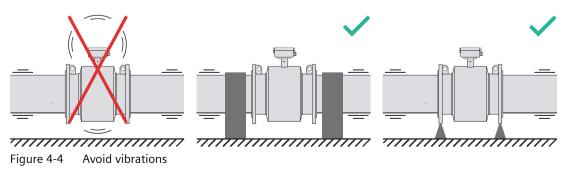
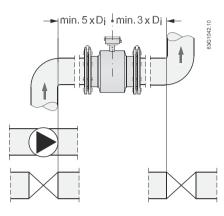



Figure 4-3 Correct installation at low point before outlet

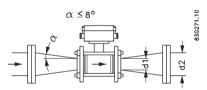
Vibrations

In installations with strong vibrations remote installation of the transmitter is recommended. Alternatively mitigate vibrations by installing pipe support in close proximity to the flowmeter.

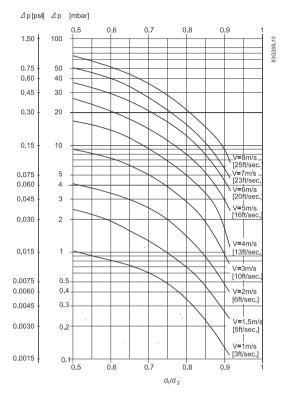


4.1 Determining a location

Inlet and outlet conditions


To achieve accurate flow measurement it is essential to have straight lengths of inlet and outlet pipes and a certain distance to pumps and valves.

It is also important to centre the flowmeter in relation to pipe flanges and gaskets.



Installation in large pipes

The flowmeter can be installed between two reducers (for example DIN 28545). At $\alpha \le 8^{\circ}$ the following pressure drop curves apply. The curves are applicable to water.

4.2 Orienting the sensor

Example:

A flow of 3 m/s (v) in a sensor with a diameter reduction from DN 100 to DN 80 ($d_1/d_2 = 0.8$) gives a pressure drop of 2.9 mbar.

4.2 Orienting the sensor

Flow direction

The calibrated flow direction is marked by the arrow on the sensor. Flow in this direction is indicated as positive by default. The accuracy of the sensor does not change with reverse flow.

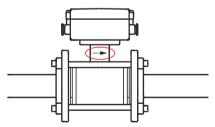


Figure 4-5 Flow direction indicator

4.2 Orienting the sensor

Orientation

The sensor operates in all orientations, but Siemens has the following recommendations:

Vertical installation with an upwards flow

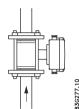


Figure 4-6 Vertical orientation, upwards flow

NOTICE

Abrasive liquids / liquids containing solid particles

A vertical installation minimizes wear and deposits in the sensor

Note

Gas/air bubbles in the liquid

A vertical installation minimizes any negative effect of gas/air bubbles in the liquid

Horizontal installation, terminal box upwards or downwards

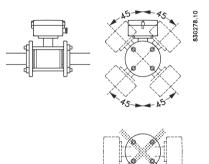


Figure 4-7 Horizontal installation, various terminal box positions

NOTICE

Do NOT mount the sensor with the terminal box sideways

This will position the electrodes at the top where there is possibility for air bubbles and at the bottom where there is possibility for mud, sludge, sand etc.

Note

Empty pipe detection

For applications with empty pipe detection, the sensor can be tilted 45°, as shown above.

4.3 Mounting

4.3.1 Installation preparation

Installation conditions

The following points must be observed during installation:

- Install the sensor in rigid pipelines in order to support the weight of the meter.
- The device must be installed without mechanical tension (torsion, bending).
- Install flange devices with plane parallel counter-flanges and only use appropriate gaskets.
- Use proper gaskets made from a material that is compatible with the measuring medium and measuring medium temperature.
- Gaskets must not extend into the flow area, since possible turbulence could influence the accuracy of the device.
- The piping may not exert any inadmissible forces or torques on the device.
- Make sure that the temperature limits are not scaled up during operation of the device.
- Vacuum shocks in the piping should be avoided to prevent damage to the liners (PTFE liner). Vacuum shocks can destroy the device.
- Do not remove the blind plugs in the cable glands until you are ready to install the electrical cable
- If earthing rings are used, use standard flange gaskets on both sides of the ring.

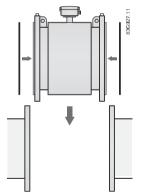


Figure 4-8 Correct installation with gaskets

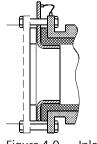


Figure 4-9 Inlet protection

Transporting

Lifting the sensor

Do **NOT** lift the sensor by the terminal box. Do **NOT** use a forklift. If available lift the sensor by the lifting eyes fitted to the device. Otherwise lift the sensor by the process connections.

Flange devices ≤ DN 300

- Use carrying straps to transport devices with flange sizes smaller than DN 300.
- Wrap the carrying straps around both process connections when lifting the device.
- Chains should not be used, since these may damage the enclosure.

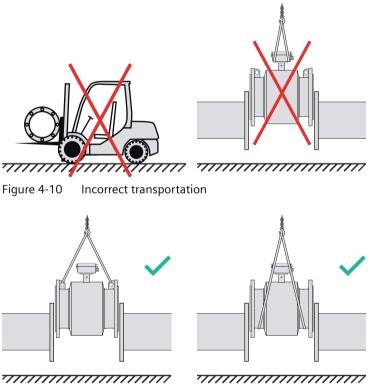
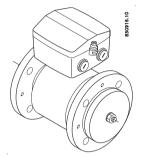
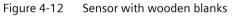


Figure 4-11 Correct transportation


Removing the liner protectors


NOTICE

Sensors with PTFE or PFA liners only The following information is only relevant for sensor types with PTFE or PFA liners.

Sensors with PTFE liner

At delivery, the sensor is mounted with wooden blanks to hold the liner in place during transportation and storage. Do not remove the blanks until you are ready for installation. After only a few hours without the blanks, the liner creeps back towards its original shape. As a result, the installation is more difficult to carry out.

Remove the blanks immediately before mounting the sensor

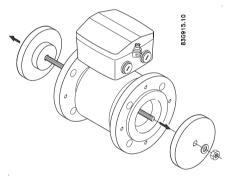


Figure 4-13 Removing wooden blanks

Sensors with PFA liner

NOTICE
Sharp objects can damage the liner
Do not use sharp objects to remove the blanks as this can damage the liner.

At delivery, the sensor is mounted with blanks to protect the liner during transportation and storage.

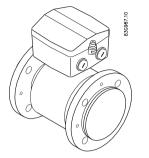


Figure 4-14 Sensor with blanks

Remove the blanks immediately before mounting the sensor

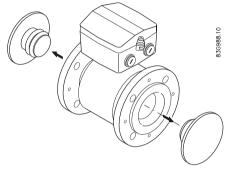


Figure 4-15 Removing blanks

See also

Installing the sensor (Page 31)

4.3.2 Installing the sensor

Before you start

- Consider the installation conditions as described under Determining a location (Page 23).
- Read the safety notes (Page 23).

Gasket selection

NOTICE
Devices with a PTFE or PFA liner
Devices with a PTFE or PFA liner do not require additional gaskets.

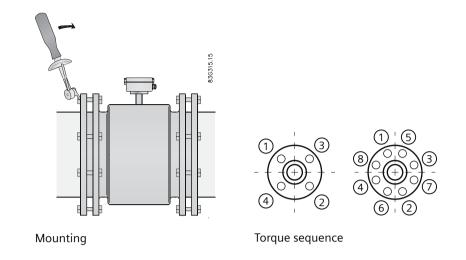
NOTICE

Gaskets shall not protrude

Ensure the gaskets fit concentrically. Otherwise the flow profile can get distorted.

NOTICE

Devices with hard rubber or soft rubber liner


- Devices with a hard or soft rubber liner always require additional gaskets.
- Siemens recommends using gaskets made from rubber or rubber-like sealing materials.
- Do not scale up the tightening torques to fit your gasket selection. See Torque values (Page 33).

Guideline:

- Gasket hardness softer than the liner hardness and softer than ebonite.
- Gasket temperature range larger than the media termperature range and larger than the ambient temperature of the sensor.
- Gasket inner diameter larger than the inner diameter of the sensor.
- Check with the gasket supplier that the gasket is suitable for the expected working pressure.

Procedure

- 1. Remove the liner protectors, if present. Installation preparation (Page 28).
- 2. Position the sensor plane parallel and centered between the pipes.
- 3. Install gaskets between mating surfaces according to recommendations.
- 4. Consider the torque values and use approproiate bolts.
- 5. Tighten the bolts crosswise as shown in the torque sequence. Increase the torque gradually:
 - Tighten the bolts to 50 % of maximum torque.
 - Tighten the bolts to 80 % of maximum torque.
 - Tighten the bolts to maximum torque, but do **NOT** exceed.

4.3.3 Torque values

Torque calculations

CAUTION
Overtightened bolts
Leakage/damage to flowmeter or piping may arise if bolts are overtightened.

All values are theoretical and are calculated on the assumption that:

- All bolts are new and material selection is according to EN 1515-1 table 2.
- Gasket material not exceeding 75 shore A is used between the flowmeter and mating flanges.
- All bolts are galvanized and adequately lubricated.
- Flanges are made of carbon steel.
- Flowmeter and mating flanges are correctly aligned.

Torque values

Note

Conversion to F/Lbs

To convert the torque values from Nm to F/Lbs multiply by 0.74.

Installing/Mounting

4.3 Mounting

Nominal size Liner		EN 1092-1											
		PN 6				PN 10				PN 16			
		PFA, PTFE, Ebonite		Soft rubber, EPDM, Linatex		PFA, PTFE, Ebonite		Soft rubber, EPDM, Linatex		PFA, PTFE, Ebonite		Soft rubber, EPDM, Linatex	
mm	inch	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
15	1/2	-	-	-	-	-	-	-	-	-	-	-	-
25	1	-	-	-	-	-	-	-	-	-	-	-	-
32	11⁄4	-	-	-	-	-	-	-	-	-	-	-	-
40	11/2	-	-	-	-	-	-	-	-	-	-	-	-
50	2	-	-	-	-	-	-	-	-	-	-	-	-
65	21/2	3.9	4	3.2	4	-	-	-	-	8.5	9	6.9	7
80	3	6.9	7	5.7	6	-	-	-	-	10.8	11	8.8	9
100	4	10.3	11	8.7	9	-	-	-	-	13.8	14	11.6	12
125	5	6.4	7	5.5	6	-	-	-	-	19.2	20	16.5	17
150	6	8.1	9	7.2	8	-	-	-	-	29.8	31	26.1	27
200	8	13.0	14	11.7	12	29.3	31	26.2	27	31.2	33	27.9	29
250	10	12.5	13	11.4	12	27.4	29	24.9	26	52.4	55	47.7	50
300	12	21.0	22	19.5	20	36.2	38	33.3	35	72.6	76	66.5	70
350	14	27.3	29	25.1	26	36.9	39	33.7	35	73.5	77	67.0	70
400	16	25.5	27	23.7	25	55.0	58	50.7	53	102.6	108	94.3	99
450	18	31.7	33	29.6	31	53.2	56	49.4	52	102.9	108	95.1	100
500	20	30.3	32	28.5	30	64.0	67	59.8	63	140.7	148	130.6	137
600	24	49.7	52	47.1	49	97.8	103	92.3	97	214.7	225	200.6	211
700	28	55.4	58	52.5	55	111.3	117	104.9	110	213.5	224	201.0	211
750	30	-	-	-	-	-	-	-	-	-	-	-	-
800	32	79.9	84	76.2	80	158.0	166	149.8	157	298.1	313	282.3	296
900	36	98.6	104	94.5	99	166.3	175	158.4	166	313.7	329	298.8	314
1000	40	102.2	107	98.4	103	219.8	231	210.1	221	419.6	441	400.6	421
1050	42	-	-	-	-	-	-	-	-	-	-	-	-
1100	44	-	-	-	-	-	-	-	-	-	-	-	-
1200	48	143.0	150	138.1	145	301.0	316	289.1	304	599.7	630	575.4	604
1400	54	187.5	197	181.5	191	382.8	402	369.2	388	702.1	737	676.9	711
1500	59	212.1	223	206.3	217	437.8	460	424.0	445	-	-	-	-
1600	66	215.7	226	209.4	220	521.6	548	503.8	529	951.2	999	917.5	963
1800	72	270.2	284	263.0	276	586.3	616	568.1	596	1069.0	1122	1035.8	1088
2000	78	326.6	343	318.4	334	657.5	690	638.3	670	1284.4	1349	1246.9	1309
2200	87	363.9	382	-	-	832.4	874	-	-	1423.3	1494	1386.9	1456

Table 4-1Minimum and maximum torques for EN 1092-1 PN 6 to PN 16 in Nm

Nominal		EN 1092-1											
size Liner		PN 25				PN 40				PN 63			
		PFA, PTFE, Ebonite		Soft rubber, EPDM, Linatex		PFA, PTFE, Ebonite		Soft rubber, EPDM, Linatex		PFA, PTFE, Ebonite		Soft rubber, EPDM, Linatex	
mm	inch	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
15	1/2	-	-	-	-	4.7	5	-	-	-	-	-	-
25	1	-	-	-	-	10.7	11	8.0	9	-	-	-	-
32	11⁄4	-	-	-	-	18.2	19	13.8	14	-	-	-	-
40	11/2	-	-	-	-	22.9	24	17.6	19	-	-	-	-
50	2	-	-	-	-	30.3	32	23.9	25	60.2	63	46.5	49
65	21/2	-	-	-	-	21.3	22	17.2	18	42.4	45	33.5	35
80	3	-	-	-	-	26.9	28	22.0	23	53.6	56	43.0	45
100	4	-	-	-	-	45.2	47	38.0	40	86.5	91	71.3	75
125	5	-	-	-	-	77.8	82	59.9	63	128.7	135	108.4	114
150	6	-	-	-	-	94.8	99	82.6	87	190.4	200	163.0	171
200	8	63.2	66	56.1	59	120.0	126	106.1	111	232.3	244	202.4	212
250	10	101.7	107	91.8	96	193.5	203	173.7	182	336.5	353	296.9	312
300	12	105.3	111	95.7	101	203.5	214	184.1	193	352.7	370	314.8	331
350	14	152.6	160	138.6	146	284.5	299	257.4	270	-	-	-	-
400	16	207.4	218	189.9	199	410.4	431	373.4	392	-	-	-	-
450	18	198.9	209	183.5	193	355.4	373	327.5	344	-	-	-	-
500	20	243.3	255	225.4	237	459.8	483	426.1	447	-	-	-	-
600	24	362.1	380	338.6	356	753.0	791	702.2	737	-	-	-	-
700	28	-	-	-	-	-	-	-	-	-	-	-	-
750	30	-	-	-	-	-	-	-	-	-	-	-	-
800	32	-	-	-	-	-	-	-	-	-	-	-	-
900	36	-	-	-	-	-	-	-	-	-	-	-	-
1000	40	-	-	-	-	-	-	-	-	-	-	-	-
1050	42	-	-	-	-	-	-	-	-	-	-	-	-
1100	44	-	-	-	-	-	-	-	-	-	-	-	-
1200	48	-	-	-	-	-	-	-	-	-	-	-	-
1400	54	-	-	-	-	-	-	-	-	-	-	-	-
1500	59	-	-	-	-	-	-	-	-	-	-	-	-
1600	66	-	-	-	-	-	-	-	-	-	-	-	-
1800	72	-	-	-	-	-	-	-	-	-	-	-	-
2000	78	-	-	-	-	-	-	-	-	-	-	-	-
2200	87	-	-	-	-	-	-	-	-	-	-	-	-

Table 4-2 Minimum and maximum torques for EN 1092-1 PN 40 to PN 63 in Nm

Installing/Mounting

4.3 Mounting

Table 4-3Minimum and maximum torques for EN 1092-1 PN 100 and AS 2129 in Nm

Nominal size Liner			EN	1092-1		AS 2129					
			Р	N 100		Table E					
		PFA, PTFE, I	Ebonite	Soft rubbe tex	Soft rubber, EPDM, Lina- tex		, Ebonite	Soft rubber, EPDM, Lina- tex			
mm	inch	Min	Max	Min	Max	Min	Max	Min	Max		
15	1/2	-	-	-	-	1.8	2	-	-		
25	1	35.3	37	25.8	27	3.2	4	2.4	3		
32	1¼	57.3	60	42.5	45	3.6	4	2.7	3		
40	1½	72.3	76	54.5	57	4.8	5	3.7	4		
50	2	114.8	121	88.1	93	8.2	9	6.5	7		
65	21/2	80.5	85	63.6	67	10.5	11	8.6	9		
80	3	101.8	107	81.7	86	14.6	15	12.1	13		
100	4	155.3	163	127.2	134	11.4	12	9.7	10		
125	5	229.2	241	191.8	201	16.4	17	14.1	15		
150	6	202.9	213	172.4	181	24.8	26	21.8	23		
200	8	370.7	389	321.0	337	39.7	42	35.5	37		
250	10	586.6	616	516.2	542	40.4	42	36.6	38		
300	12	665.6	699	590.0	620	62.0	65	57.0	60		
350	14	-	-	-	-	85.7	90	78.1	82		
400	16	-	-	-	-	105.9	111	97.4	102		
450	18	-	-	-	-	100.9	106	93.1	98		
500	20	-	-	-	-	122.2	128	113.4	119		
600	24	-	-	-	-	210.9	221	197.4	207		
700	28	-	-	-	-	211.0	222	199.6	210		
750	30	-	-	-	-	277.4	291	261.6	275		
800	32	-	-	-	-	313.4	329	296.4	311		
900	36	-	-	-	-	323.2	339	306.9	322		
1000	40	-	-	-	-	406.9	427	389.5	409		
1050	42	-	-	-	-	-	-	-	-		
1100	44	-	-	-	-	-	-	-	-		
1200	48	-	-	-	-	444.2	466	426.3	448		
1400	54	-	-	-	-	-	-	-	-		
1500	59	-	-	-	-	-	-	-	-		
1600	66	-	-	-	-	-	-	-	-		
1800	72	-	-	-	-	-	-	-	-		
2000	78	-	-	-	-	-	-	-	-		
2200	87	-	-	-	-	-	-	-	-		

4.3 Mounting

Nomin	nal						ANSI	B16.5					
size			Clas	s 150			Clas	s 300			Clas	s 600	
Liner		PFA, PT Ebonite		Soft rul EPDM,		PFA, PT Ebonite		Soft rul EPDM,	bber, Linatex	PFA, PT Ebonite		Soft rub EPDM, I	
mm	inch	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
15	1/2	1.5	2	-	-	3.9	4	-	-	-	-	-	-
25	1	3.1	4	2.5	3	10.0	11	8.0	9	21.0	22	15.6	16
32	1¼	5.0	6	3.9	4	15.9	17	12.5	13	32.9	35	24.4	26
40	1½	6.6	7	5.2	6	24.7	26	19.4	20	50.6	53	38.2	40
50	2	12.7	13	10.0	11	16.5	17	13.1	14	33.7	35	25.9	27
65	21/2	16.0	17	13.1	14	24.5	26	20.1	21	50.2	53	39.8	42
80	3	23.5	25	19.3	20	36.0	38	29.7	31	73.2	77	58.9	62
100	4	17.6	19	14.9	16	54.1	57	45.6	48	124.2	130	101.8	107
125	5	28.5	30	24.5	26	74.2	78	63.9	67	193.7	203	162.2	170
150	6	38.0	40	33.2	35	66.0	69	57.6	61	172.4	181	146.5	154
200	8	58.1	61	51.9	54	113.5	119	101.2	106	296.1	311	257.6	270
250	10	61.7	65	56.0	59	137.3	144	124.6	131	346.8	364	306.9	322
300	12	84.8	89	77.6	81	211.9	222	194.0	204	381.4	400	340.1	357
350	14	112.6	118	103.7	109	197.9	208	182.2	191	491.1	516	440.6	463
400	16	108.8	114	100.8	106	280.4	294	259.8	273	683.1	717	618.4	649
450	18	157.1	165	145.9	153	300.4	315	279.0	293	942.8	990	857.0	900
500	20	149.9	157	140.1	147	358.3	376	334.8	352	936.2	983	857.0	900
600	24	229.9	241	216.4	227	596.3	626	561.3	589	1478.5	1552	1365.7	1434
700	28	-	-	-	-	-	-	-	-	-	-	-	-
750	30	-	-	-	-	-	-	-	-	-	-	-	-
800	32	-	-	-	-	-	-	-	-	-	-	-	-
900	36	-	-	-	-	-	-	-	-	-	-	-	-
1000	40	-	-	-	-	-	-	-	-	-	-	-	-
1050	42	-	-	-	-	-	-	-	-	-	-	-	-
1100	44	-	-	-	-	-	-	-	-	-	-	-	-
1200	48	-	-	-	-	-	-	-	-	-	-	-	-
1400	54	-	-	-	-	-	-	-	-	-	-	-	-
1500	59	-	-	-	-	-	-	-	-	-	-	-	-
1600	66	-	-	-	-	-	-	-	-	-	-	-	-
1800	72	-	-	-	-	-	-	-	-	-	-	-	-
2000	78	-	-	-	-	-	-	-	-	-	-	-	-
2200	87	-	-	-	-	-	-	-	-	-	-	-	-

Table 4-4Minimum and maximum torques for ANSI B16.5 in Nm

4.3 Mounting

Nomin	al						AS	4087					
size			PI	N 16			PN	121			PN	35	
Liner		PFA, PT Ebonite		Soft rul EPDM,		PFA, PT Ebonite		Soft rul EPDM,	ober, Linatex	PFA, PT Ebonite		Soft rul EPDM,	
mm	inch	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
15	1/2	-	-	-	-	-	-	-	-	-	-	-	-
25	1	-	-	-	-	-	-	-	-	-	-	-	-
32	1¼	-	-	-	-	-	-	-	-	-	-	-	-
40	1½	-	-	-	-	-	-	-	-	-	-	-	-
50	2	9.4	10	7.5	8	16.2	17	12.8	13	27.0	28	21.3	22
65	21/2	12.0	13	9.8	10	11.2	12	9.0	10	18.6	20	15.0	16
80	3	16.7	17	13.8	15	14.8	16	12.1	13	24.6	26	20.1	21
100	4	26.1	27	22.1	23	20.3	21	17.0	18	33.8	36	28.4	30
125	5	-	-	-	-	-	-	-	-	-	-	-	-
150	6	23.7	25	20.8	22	31.6	33	27.4	29	52.7	55	45.6	48
200	8	37.7	40	33.6	35	50.7	53	44.6	47	64.0	67	57.5	60
250	10	69.3	73	62.8	66	82.9	87	74.3	78	107.5	113	98.5	103
300	12	60.7	64	55.6	58	83.3	88	75.5	79	108.1	113	100.2	105
350	14	98.0	103	89.3	94	119.8	126	108.6	114	164.3	173	150.9	158
400	16	121.0	127	111.4	117	120.2	126	109.8	115	174.0	183	160.4	168
450	18	153.7	161	141.9	149	163.3	171	150.1	158	234.8	247	218.1	229
500	20	139.7	147	129.6	136	167.1	175	154.2	162	245.0	257	228.0	239
600	24	218.0	229	203.9	214	244.6	257	227.9	239	361.8	380	340.0	357
700	28	217.9	229	206.0	216	-	-	-	-	-	-	-	-
750	30	-	-	-	-	-	-	-	-	-	-	-	-
800	32	358.2	376	338.8	356	-	-	-	-	-	-	-	-
900	36	369.4	388	350.8	368	-	-	-	-	-	-	-	-
1000	40	427.2	449	408.5	429	-	-	-	-	-	-	-	-
1050	42	-	-	-	-	-	-	-	-	-	-	-	-
1100	44	-	-	-	-	-	-	-	-	-	-	-	-
1200	48	465.9	489	446.7	469	-	-	-	-	-	-	-	-
1400	54	-	-	-	-	-	-	-	-	-	-	-	-
1500	59	-	-	-	-	-	-	-	-	-	-	-	-
1600	66	-	-	-	-	-	-	-	-	-	-	-	-
1800	72	-	-	-	-	-	-	-	-	-	-	-	-
2000	78	-	-	-	-	-	-	-	-	-	-	-	-
2200	87	-	-	-	-	-	-	-	-	-	-	-	-

Table 4-5 Minimum and maximum torques for AS 4087

4.4 Potential equalization

Nomir	nal				JIS E	82220					AWW	A C-207	
size			1	I 0К			:	20K			Cl	ass D	
Liner		PFA, PT Ebonite		Soft ru EPDM,	bber, Linatex	PFA, PT Ebonite		Soft ru EPDM,	bber, Linatex	PFA, PT Ebonite		Soft ru EPDM,	bber, Linatex
mm	inch	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
15	1/2	2.2	3	-	-	5.2	6	-	-	-	-	-	-
25	1	4.7	5	3.5	4	11.5	12	8.6	9	-	-	-	-
32	11⁄4	6.0	7	4.6	5	14.7	15	11.1	12	-	-	-	-
40	1½	6.8	7	5.2	6	16.5	17	12.7	13	-	-	-	-
50	2	9.4	10	7.4	8	11.4	12	9.0	10	-	-	-	-
65	21/2	13.4	14	10.9	11	16.3	17	13.2	14	-	-	-	-
80	3	7.8	8	6.4	7	26.0	27	21.3	22	-	-	-	-
100	4	11.0	12	9.3	10	37.4	39	31.5	33	-	-	-	-
125	5	19.5	20	16.8	18	60.3	63	51.6	54	-	-	-	-
150	6	26.1	27	22.9	24	32.5	34	28.2	30	-	-	-	-
200	8	26.0	27	23.3	25	45.4	48	40.4	42	-	-	-	-
250	10	43.3	45	39.3	41	77.1	81	69.2	73	-	-	-	-
300	12	41.2	43	38.1	40	74.8	79	68.1	71	-	-	-	-
350	14	52.0	55	47.9	50	116.4	122	106.0	111	-	-	-	-
400	16	74.6	78	69.0	72	146.2	154	134.3	141	-	-	-	-
450	18	73.9	78	68.7	72	149.2	157	137.5	144	-	-	-	-
500	20	89.6	94	83.7	88	179.0	188	165.9	174	-	-	-	-
600	24	129.4	136	121.9	128	241.4	253	225.7	237	-	-	-	-
700	28	-	-	-	-	-	-	-	-	124.1	130	116.9	123
750	30	-	-	-	-	-	-	-	-	139.4	146	131.7	138
800	32	-	-	-	-	-	-	-	-	188.4	198	178.3	187
900	36	-	-	-	-	-	-	-	-	204.2	214	194.1	204
1000	40	-	-	-	-	-	-	-	-	222.8	234	212.3	223
1050	42	-	-	-	-	-	-	-	-	246.8	259	233.7	245
1100	44	-	-	-	-	-	-	-	-	241.4	254	230.7	242
1200	48	-	-	-	-	-	-	-	-	257.7	271	246.8	259
1400	54	-	-	-	-	-	-	-	-	373.4	392	360.8	379
1500	59	-	-	-	-	-	-	-	-	388.6	408	374.0	393
1600	66	-	-	-	-	-	-	-	-	471.5	495	452.6	475
1800	72	-	-	-	-	-	-	-	-	480.8	505	464.1	487
2000	78	-	-	-	-	-	-	-	-	592.6	622	575.3	604
2200	87	-	-	-	-	-	-	-	-	802.5	843	-	-

Table 4-6 Minimum and maximum torques for JIS B2220 and AWWA C-207 in Nm

4.4 Potential equalization

To obtain optimum results from the measuring system, the sensor must have the same electrical potential as the liquid being measured.

4.4 Potential equalization

This is achieved by means of built-in grounding electrodes.

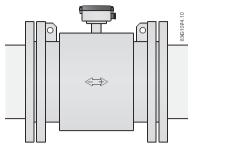


Figure 4-16 Potential equalization with earthing electrodes

Cathodic protected piping

Special attention must be paid to systems with cathodic protection.

Use in hazardous area!

Cathodic pipe protection is not allowed in hazardous areas

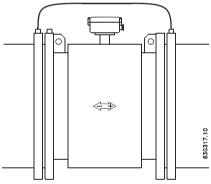


Figure 4-17 Cathodic protection

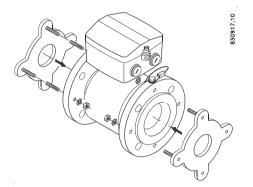
- Isolate the sensor from cathodic protected pipes using insulated bolts.
- Use bypass cable between the mating flanges

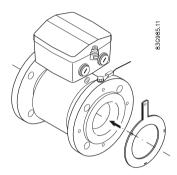
Note

Remote mounted sensor versions

If the above is not acceptable, remote mounted sensors can alternatively be connected as follows:

- Connect coil current cable shield at sensor end via a 1.5 µF condensator
- Make sure that electrode cable shield is not connected at both ends


4.5 Installation with grounding rings

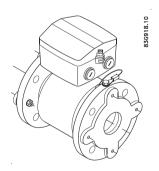

NOTICE

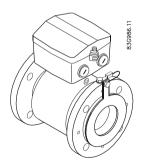
Only sensors with PTFE or PFA liners without grounding electrodes

Installation with grounding rings is only relevant for sensors with PTFE or PFA liners

• Mount grounding rings where necessary on non-conductive pipes.

Installation with grounding rings on sensors with PTFE liner


Installation with flat grounding rings on sensors with PFA liner


Note Potential equalization

For potential equalization one grounding ring is sufficient.

By unidirectional flow it is recommended to mount the grounding ring on the inlet side.

• Connect the grounding rings to the sensor with the enclosed grounding straps.

Groundingstrap connection on type E grounding Grounding strap connection on flat grounding rings

4.5 Installation with grounding rings

Note

Abrasive liquids

In special cases the grounding rings can work as inlet protection.

NOTICE

High temperature sensors

High temperature sensors are delivered with two factory mounted grounding rings. No further action need to be taken for potential equalisation.

Connecting

The following contains a short description of how to connect a remote mounted sensor to transmitter types:

- SITRANS FM MAG5000/6000 (standard versions)
- SITRANS FM MAG6000 19" with Safety barrier
- SITRANS FM MAG6000I Ex

For more information, for example about wiring of power supply and outputs, refer to the operating instructions for the respective transmitters.

Before connecting

• Check that the serial numbers on the sensor and the SENSORPROM[®] unit are identical.

5.1 General safety requirements

🚺 WARNING

The pertinent regulations must be observed for electrical installation.

- Never install the device with the mains voltage switched on!
- Danger of electric shock!
- The electrodes and magnetic current line may only be connected when the device is not connected to the power supply.
- If the housing is under voltage (power supply), the cover may be unscrewed by qualified personnel only.

Mains supply from building installation Class II

A switch or circuit breaker (max. 15 A) must be installed in close proximity to the equipment and within easy reach of the operator. It must be marked as the disconnecting device for the equipment.

Note

Hazardous area applications

Special requirements apply to the location and interconnection of sensor and transmitter. See Use in hazardous areas (Page 14).

5.1 General safety requirements

Terminal box

Before opening the terminal box check that:

- No explosion hazard exists
- All connection leads are potential free

Grounding

The mains protective earth wire must be connected to the PE terminal in accordance with the diagram (class 1 power supply)

Mechanical counters

When mounting a mechanical counter to terminals 57 and 58 (active output), a 1000 μ F capacitor must be connected to terminals 56 and 58. Capacitor + is connected to terminal 56 and capacitor - to terminal 58.

Output cables

If long cables are used in electrically noisy environments, it is recommended to use screened cables.

Electrode cables

Dotted connections are only to be made when using special electrode cables.

🛕 WARNING

National requirements

Observe country-specific installation directives for field wiring.

Cable specifications

- Only use cables with at least the same degree of protection as the sensor to install the sensor.
- The line length from the cable gland to the terminals must be kept as short as possible. Line loops in the terminal box must be avoided.
- To guarantee the IP67 degree of protection, use cables with the required specifications.

Protective conductor terminal

The required cable is min. AGW16 or 1.5 $mm^2\,$ Cu.

🛕 WARNING

Wire insulation

For field wiring installation: Ensure that the national requirements of the country in which the flowmeters are installed is met.

See also

Cable data (Page 71)

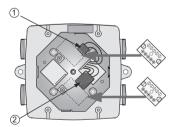
5.2 Remote installation

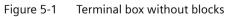
Note

Remote installation only

The following applies to remote installation of MAG5000/6000 or MAG6000I.

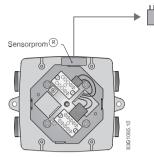
1. Unscrew and remove terminal box lid.

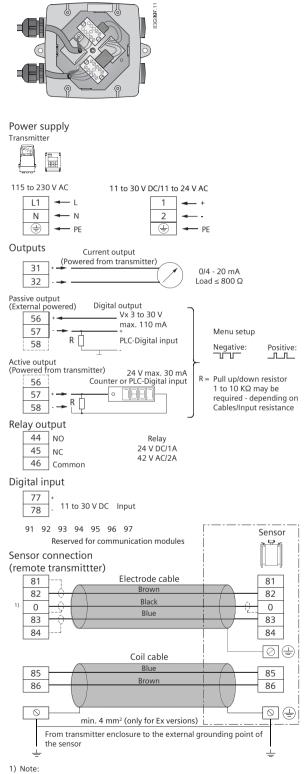



 Mount the two terminal blocks as shown and insert electrode cable plug ① (terminals 82, 0 and 83) and coil cable plug ② (terminals 85 and 86). Terminals electrode cable: 82, 0 and 83 Terminals special electrode cable: 84, 83, 0, 82 and 81 Terminals coil cable: 85; 86

Note

Special electrode cable


Special electrode cable must be connected to terminals 84, 83, 0, 82 and 81.


5.2 Remote installation

3. Remove SENSORPROM[®] unit from sensor and mount it on connection plate in transmitter, see relevant transmitter operating instructions.

4. Fit the ¹/₂" NPT or M20 cable glands for supply and output cables.

5. Fit and connect electrode and coil cables as shown below.

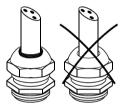
Special cable with individual wire shields (shown as dotted lines) are only required when using empty pipe function or long cables.

5.3 Installation check

Unscreened cable ends

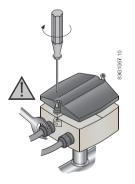
Keep unscreened cable ends as short as possible.

Prevent interference


Separate electrode and coil cables to prevent interference.

Use in hazardous area

Connect mains protective earth to the PE terminal in accordance with the above diagram in order to obtain potential equalization.


6. Tighten cable glands well to obtain optimum sealing. The cable entry gasket must obtain firm contact with the cable.

7. Remount terminal box lid.

Note Tightening torque

Tighten the bolts with 0.5 Nm.

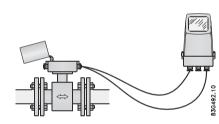
5.3 Installation check

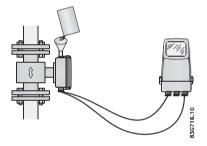
The meter is now ready to go into normal operation - for commissioning and setting of parameters refer to the relevant transmitter manual.

Before commissioning it must be checked that:

• The device has been installed and connected in accordance with the guidelines provided previous in this chapter and in Installing/Mounting (Page 23).

5.4 Potting


If sensor is buried or permanently submerged, terminal box must be encapsulated with silicon dielectric gel (non-toxic, transparent and self-healing gel).


NOTICE

Electrical connections

Do **not** pot meter before electrical connections have been made.

- Mix the two components of the potting kit well and pour into terminal box.
- Let cure for approximately 24 hours at approximately 25°C (77°F). Curing time increases by 100% per -10°C (-18°F).

Horizontal orientation

Vertical orientation

Note

Gel can be penetrated with test instruments or be removed in case of cable replacement.

Connecting

5.4 Potting

Service and maintenance

6.1 Maintenance

The device is maintenance-free. However, a periodic inspection according to pertinent directives and regulations must be carried out.

An inspection can include check of:

- Ambient conditions
- Seal integrity of the process connections, cable entries, and cover screws
- Reliability of power supply, lightning protection, and grounds

Note

Siemens defines flow sensors as non-repairable products.

Impermissible repair and maintenance of the device

• Repair and maintenance must be carried out by Siemens authorized personnel only.

6.2 Cleaning

Cleaning the enclosure

- Clean the outside of the enclosure with the inscriptions and the display window using a cloth moistened with water or a mild detergent.
- Do not use any aggressive cleansing agents or solvents, e.g. acetone. Plastic parts or the painted surface could be damaged. The inscriptions could become unreadable.

🛕 WARNING

Risk from electrostatic discharge

Always wipe the device with a damp cloth or dissipative cloth before installing and maintaining the equipment in hazardous areas to avoid risk from electrostatic discharge.

Under certain extreme circumstances, the non-metallic coating may generate an ignitioncapable level of electrostatic charge. Therefore, do not install in locations where the external conditions promote electrostatic charge buildup on such surfaces. 6.5 Ordering of spare parts

6.3 Transportation and storage

To guarantee sufficient protection during transport and storage, observe the following:

- Keep the original packaging for subsequent transportation.
- Devices/replacement parts should be returned in their original packaging.
- If the original packaging is no longer available, ensure that all shipments are properly packaged to provide sufficient protection during transport. Siemens cannot assume liability for any costs associated with transportation damages.

Insufficient protection during storage

The packaging only provides limited protection against moisture and infiltration.

• Provide additional packaging as necessary.

Special conditions for storage and transportation of the device are listed in Technical data (Page 59).

6.4 Repair

🛕 WARNING

Impermissible repair of explosion protected devices

Risk of explosion in hazardous areas

• Repair must be carried out by Siemens authorized personnel only.

A WARNING

Impermissible accessories and spare parts

Risk of explosion in areas subject to explosion hazard.

- Only use original accessories or original spare parts.
- Observe all relevant installation and safety instructions described in the instructions for the device or enclosed with the accessory or spare part.

6.5 Ordering of spare parts

Condition

• You have a Siemens Industry Mall account.

1

Procedure

- 1. Open the Process instrumentation catalog (<u>https://www.siemens.com/</u> processinstrumentation/catalogs).
- 2. Select the desired language.
- 3. To find spare parts for your device, do one of the following:
 - Enter the complete order number of your device (e.g. 7ME4633-4KA51-8DC3-Z A05+B11+E06+F11) into the "Product number" field and click "Go".
 - Enter the serial number of your device (e.g. N1KXXXXXX) in the "Serial number" field and click "Go".
 - If you do not know the product or serial number, search for your device under "Product family".

4. Navigate to the "Spare parts" tab.

You see the list of spare parts available for your device.

sic Data	MLFB Configura	tion Technical da	ta MLFB Overview	Downloads / Documents	Spare parts A	Accessory parts	
elected p	roducts: > to watch	list			10 Spare	9	
🗌 🔺 F	Product number	Description	L-price/unit	Action	<u> </u>		
	A5E03549344		ass window, seal FVM coated, with glass windo		atch list	<u>^</u>	
		FVMQ, for SITRA					

- 5. Select a spare part and add it to your watch list. The watch list opens.
- 6. Click "Add to cart of Industry Mall".

Status ∅ Pos. Tag ID Part number PMD Order Number Short description □ ◇◇◆ 10 ◆ A5E03549344 A5E03549344 Lid aluminum, glass Lid aluminum, txx > Save ◇◇◆ 20 ◆ A5E0354929 A5E0354929 Lid aluminum, nv vi Lid aluminum, txx > Add to cart of Industry Mali > Bulk upload	CIC	cieu Positi	ons. New by pi	ouuci 110.	Copy Delete Refresh Add to cart of	or mousery mail	Filter	go	> Clear
		Status	🖉 Pos.	Tag ID	Part number		Short description	C	
20		***	10		A5E03549344	A5E03549344	Lid aluminum, glass	Lid aluminum, 1x c	
		~~~	20		A5E03549429	A5E03549429	Lid aluminum, no wi	Lid aluminum, 1x c	
									> Export

The Siemens Industry Mall opens and you can order your spare part.

To return a product to Siemens, see Returns to Siemens (<u>www.siemens.com/returns-to-siemens</u>).

Contact your Siemens representative to clarify if a product is repairable, and how to return it. They can also help with quick repair processing, a repair cost estimate, or a repair report/ cause of failure report.

NOTICE

Decontamination

The product may have to be decontaminated before it is returned. Your Siemens contact person will let you know for which products this is required.

Service and maintenance

6.5 Ordering of spare parts

Troubleshooting/FAQs

7.1 Sensor check

Requirement

To check the SITRANS FM sensors the following test instruments will be required:

- Digital Meter/Multimeter
- Ohmmeter "Megger"
- (Moving Coil Meter)

Sensor check

Remove the transmitter from the sensor or remote position before making the following checks.

Coil resistance check

• Measure the coil resistance between connection numbers 85 and 86 using a digital meter. Resistance should be within range stated in Coil resistance table (Page 89).

A low reading may indicate moisture within the coil housing or shorted coil turns.

A high reading would indicate an open circuit coil.

Note

In case of deviation from nominal coil values, the sensor is damaged and must be replaced

Coil insulation check

Potential hazard!

Only carry out a coil insulation check in non-hazardous area!

• Megger between connection number 85 and the sensor body. The resistance should be above 20 M Ω .

A low megger reading would indicate the coil insulation is breaking down. This is usually due to fluid ingress into the coil housing.

Sensors with an insulation resistance down to 1 $M\Omega$ may still work satisfactorily but this is not guaranteed.

7.2 Fluctuating process values

Electrode resistance check

- Measure the electrode resistance between connections 82 and 0 with a moving coil meter. With a sensor full of fluid the resistance should be between 5 k Ω and 50 k Ω . If the sensor is empty the resistance will be infinite.
- Repeat the resistance measurements between connections 83 and 0. The results should be the same.

If the resistance is low there may be a short on the electrodes or wiring (in the case of a remote mounted transmitter). Alternatively there may be water ingress or moisture in the terminal box.

If the resistance is high and the pipe is completely full of fluid check the following:

- 1. Fluid is electrically conductive.
- 2. Electrodes are not coated with grease or any deposit.
- 3. Electrode circuit is not open.
- 4. Remote mounted transmitter has a 3 core cable with an overall shield continuously from sensor to transmitter, including junction boxes and terminal rails inside panels.
- 5. Shield is connected to 0 or to earth terminal (PE) on sensor.

Note

Sensors removed from line

For sensors removed from line with dry bore, use megger between terminal 82 and compression plate, and 83 and compression plate to show any water ingress behind electrodes or within enclosure.

7.2 Fluctuating process values

Question

Why do the displayed process values fluctuate when the electrode cable is moved?

7.2 Fluctuating process values

Answer

There are several causes of the fluctuating process values:

- Deposits on electrodes
 - Clean the electrodes.
- Defect electrode cable
 - Replace the cable
- Incorrect cable connection
 - Connect the electrode cable (82, 83, 0 and shield) according to the instructions in Connecting (Page 43)

Note

Vibrating environments

It is recommended to use special low noise cables for sensor sizes DN 2 and DN 3 installed in vibrating environments.

7.2 Fluctuating process values

Technical specifications

Table 8-1

Version	MAG3100P	MAG3100	MAG3100HT
Product characteristic	Process and chemical (Short lead time)	Flexible product program	Process temperature above 150 °C (300 °F)
Nominal size	DN 15 to DN 300 (1/2" to 12")	DN 15 to DN 2200 (1/2" to 88")	DN 15 to DN 300 (½" to 12")
Measuring principle	Electromagnetic induction		
Excitation frequency (Mains supply:	 DN 15 to 65 (½" to 2½"): 12.5 Hz/15 Hz 	 DN 15 to 65 (½" to 2½"): 12.5 Hz/15 Hz 	 DN 15 to 65 (½" to 2½"): 12.5 Hz/15 Hz
50 Hz/60 Hz	 DN 80 to 150 (3" to 6"): 6.25 Hz/7.5 Hz 	 DN 80 to 150 (3" to 6"): 6.25 Hz/7.5 Hz 	 DN 80 to 150 (3" to 6"): 6.25 Hz/7.5 Hz
	 DN 200 to 300 (8" to 12"): 3.125 Hz/3.75 Hz 	 DN 200 to 1200 (8" to 48"): 3.125 Hz/3.75 Hz 	 DN 200 to 300 (8" to 12"): 3.125 Hz/3.75 Hz
		 DN 1400 to 2200 (54" to 88"): 1.5625 Hz/1.875 Hz 	
Enclosure rating	IP67 (EN/IEC 60529) / Type 4X/ 1 mH ₂ O for 30 min	IP67 (EN/IEC 60529) / Type 4X, 1 mH ₂ O for 30 min	IP67 (EN/IEC 60529) / Type 4X, 1 mH ₂ O for 30 min
	Option: IP68 (EN/IEC 60529) / Type 6P, 10 mH ₂ O cont. (not for Ex)	Option: IP68 (EN/IEC 60529) / Type 6P,10 mH $_2$ O cont. (not for Ex)	Option: IP68 (EN/IEC 60529) / Type 6P,10 mH $_2$ O cont. (not for Ex)
Test pressure	1.5 x PN (where applicable)	1.5 x PN (where applicable)	1.5 x PN (where applicable)
Pressure drop at 3 m/s	-	As straigth pipe	-
EMC		According to 2014/30/EU	

Table 8-2Process connections

Version	MAG3100P	MAG3100	MAG3100HT
EN 1092-1, raised face (EN 1092-1, DIN 2501 & BS 4504 have the same mating dimensions)	 DN 15 to 50 (¹/₂" to 2"): PN 40 (580 psi) DN 65 to 300 (2¹/₂" to 12"): PN 16 (232 psi) DN 200 to 300 (8" to 12"): PN 10 (145 psi) 	 DN 65 to 2200 (2¹/₂" to 88"): PN 6 (87 psi) DN 200 to 2200 (8" to 88"): PN 10 (145 psi) DN 65 to 2000 (2¹/₂" to 80"): PN 16 (232 psi) DN 200 to 600 (8" to 24"): PN 25 (362 psi) DN 15 to 600 (¹/₂" to 24"): PN 40 (580 psi) DN 50 to 300 (2" to 12"): PN 63 (913 psi) DN 25 to 300 (1" to 12"): PN 100 	 DN 15 to 300 (1/2" to 12"): PN 40 (580 psi) DN 65 to 300 (21/2" to 12"): PN 16 (232 psi) DN 200 to 300 (8" to 12"): PN 10 (145 psi) DN 200 to 300 (8" to 12"): PN 25 (362 psi)
ANSI B16.5 (~BS 1560), raised face	 ½" to 12": Class 150 (20 bar (290 psi)) 	 (1450 psi) ½" to 24": Class 150 (20 bar (290 psi)) ½" to 24": Class 300 (50 bar (725 psi)) 1" to 24": Class 600 (100 bar (1450 psi)) 	 1/2" to 12": Class 150 (20 bar (290 psi)) 1/2" to 12": Class 300 (50 bar (725 psi))
AWWA C-207, flat face	-	28" to 88": Class D (10 bar)	-
AS 2129, raised face	-	1/2" to 48": Table E	1/2" to 12": Table E
AS 4087, raised face	-	 PN 16 (DN 50 to 1200, 16 bar (232 psi)) PN 21 (DN 50 to 600, 21 bar (304 psi)) PN 35 (DN 50 to 600, 35 bar (508 psi)) 	-
JIS B 2220:2004	-	 K10 (1/2" to 24") K20 (1/2" to 24") 	-
Other flanges and pressure ratings	-	On request	On request

Version	MAG3100P	MAG3100	MAG3100HT
Sensor	-40+100 °C (-40+212 °F)	-40+100 °C (-40+212 °F)	-40+100 °C (-40+212 °F)
Ex Sensor	-20+60 °C	-20+60 °C	For media temperature up to 150 °C (302 °F):
	(-4+140 °F)	(-4+140 °F)	• -20+60 °C
			(-4140 °F)
			For media temperature 150180 °C (302356 °F):
			• -20+50 °C
			(-4+122 °F)
With compact transmit	ter		
MAG5000/6000,	-20+60 °C	-20+60 °C	-20+60 °C
MAG6000I 2)	(-4+140 °F)	(-4+140 °F)	(-4+140 °F)
MAG6000I Ex 2)			

 Table 8-3
 Rated operating conditions (Ambient temperatures)¹

¹ Conditions also dependent on liner characteristics

 $^{2)}$ $\,$ With HART communication the max. ambient temperature is 50 °C (122 °F) $\,$

Table 8-4 Operating pressure [abs.bar]¹

Version	MAG3100P	MAG3100	MAG3100HT
PTFE Teflon	 DN 15 to 300 (½" to 12"): 0.3 to 40 bar (4 to 580 psi) 	 DN ≤ 300 (≤ 12"): 0.3 to 50 bar (4 to 725 psi) 350 ≤ DN ≤ 600 (14" ≤ DN ≤ 24"): 	 DN 15 to 300 (½" to 12") (130/180 °C (266/356°F)): 0.3/0.6 to 50 bar (4/8 to 725 psi) 180 °C (356 °F)
		0.3 to 40 bar (4 to 580 psi)	PTFE has factory-mounted ground- ing stainless steel rings type E and stainless steel terminal box
PFA	DN 15 to 150 (½" to 6"): Vacuum 0.02 to 50 bar (0.29 to 725 psi)	DN 15 to 150 (½ " to 6"): Vacuum 0.02 to 50 bar (0.29 to 725 psi)	DN 15 to 150 (½ " to 6"): Vacuum 0.02 to 50 bar (0.29 to 725 psi)
Soft rubber		0.01 to 100 bar (0.15 to 1450 psi)	
EPDM		0.01 to 40 bar (0.15 to 580 psi)	
Linatex®		0.01 to 40 bar (0.15 to 580 psi)	
Ebonite		0.01 to 100 bar (0.15 to 1450 psi)	

¹ Maximum operating pressure decreases with increasing operating temperature and with stainless steel flanges

Table 8-5 Mechanical load/Vibration

Version	MAG3100P	MAG3100	MAG3100HT				
Description	18 to 1000 Hz ra	18 to 1000 Hz random in x, y, z, directions for 2 hours according to EN 60068-2-36					
Sensor	3.17 grms						

Version	MAG3100P	MAG3100	MAG3100HT
Sensor with compact MAG5000/6000 transmitter mounted		3.17 grms	
Sensor with MAG6000I/6000I Ex transmitter mounted		1.14 grms	

Table 8-6Media temperature

Version	MAG3100P	MAG3100	MAG3100HT
PTFE Teflon	-20 to +150 °C (-4 to +302 °F)	-20 to +100 °C (-4 to +212 °F)	 -20 to +150 °C (-4 to +302 °F)
			 -20 to +180 °C (-4 to +356 °F)
			Factory mounted grounding rings type E and SS terminal box. Can only be used with remote transmitter.
PFA	-20 to +150 °C (-4 to +302 °F)	-20 to +100 °C (-4 to +212°F)	-20 to +150 °C (-4 to +302 °F)
Soft rubber		0 to +70 °C (32 to 158 °F)	
EPDM		-10 to +70 °C (14 to 158 °F)	
Linatex®		-40 to +70 °C (-40 to +158 °F)	
		For temperatures below -20 °C (-4 °F) AISI 304 or 316 flanges must be used	
Ebonite		0 to 95 °C (32 to 203 °F)	

Table 8-7 Design

Version	MAG3100P	MAG3100	MAG3100HT
Weight	See dimensional drawings		
Flange and housing material	Carbon steel ASTM A 105, with corrosion resistant coating of category C4, ac- cording to ISO 12944-2	 Carbon steel ASTM A 105, with corrosion resistant coating of category C4 or C5, according to ISO 12944-2 Stainless steel AISI 316L (1.4404) flanges and housing, polished 	 Carbon steel ASTM A 105, with corrosion resistant coating of category C4, ac- cording to ISO 12944-2 Stainless steel AISI 304 (1.4301) flanges and car- bon steel housing, with corrosion resistant coat- ing of category C4, accord- ing to ISO 12944-2 Stainless steel AISI 316L (1.4404) flanges and housing, polished
Measuring pipe material	AISI 304 (1.4301)		

Version	MAG3100P	MAG3100	MAG3100HT
Electrode material	Hastelloy C276 (PFA: Hastelloy C22)	 AISI 316Ti (1.4571) Hastelloy C276 (PFA: Hastelloy C22) Platinum/Iridium, Titanium Tantalum 	 AISI 316Ti (1.4571) Hastelloy C276 (PFA: Hastelloy C22) Platinum/Iridium, Titanium Tantalum
Grounding Electrode material	PTFE: HastelloyPFA: Hastelloy	Material as measuring electro- des Exceptions - see ordering data	No grounding electrodes
Terminal box (remote version only)	 Standard fibre glass reinforced polyamide Stainless steel AISI 316 (1.4436) 	 Standard fibre glass reinforced polyamide Stainless steel AISI 316 (1.4436) 	• Stainless steel AISI 316 (1.4436)
Cable entries			
Remote installation	 2 x M20 2 x ¹/₂" NPT 	 2 x M20 2 x ¹/₂" NPT 	 2 x M20 2 x ¹/₂" NPT
Compact installation	 MAG5000/MAG6000: 4 x M20 4 x ¹/₂" NPT MAG60001: 2 x M20 (for supply/output) 2 x ¹/₂" NPT MAG60001 Ex: 2 x M20 (for supply/output) 2 x M20 (for supply/output) 2 x ¹/₂" NPT 	 MAG5000/MAG6000: 4 x M20 4 x ¹/₂" NPT MAG6000 I: 2 x M20 (for supply/output) 2 x ¹/₂" NPT MAG6000I Ex: 2 x M20 (for supply/output) 2 x M20 (for supply/output) 2 x ¹/₂" NPT 	-

8.1 Certificates and approvals

8.1.1 Hazardous area approvals and certificates

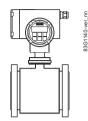
The device is approved for use in hazardous areas and has the approvals listed below. Special conditions for safe installation and operation specified by each approval authority are included in the relevant certificate.

Remote version

Table 8-8SITRANS FM MAG3100 Ex

Certification	DN15 to DN300	
ATEX/UKEX/IECEx	CSANe 24ATEX1107X	
	CSAE 24UKEX1032X	
	IECEx CSAE 24.0017X	
	© II 2 GD	
	Ex db eb ia IIB or IIC T6T3 Gb	
	Ex ia ¹⁾ tb IIIC T85°CT185°C Db	
FM Approvals	FM18US0062X	
	Class I Zone 1 AEx db eb ia IIB or IIC T6T3 Gb	
	Class II Zone 21 AEx ia ¹⁾ tb IIIC T85°CT185°C Db	
cCSAus	CSA 10.2317288	
	Class I Zone 1 AEx db eb ia IIB or IIC T6T3 Gb	
	Class II Zone 21 AEx ia ¹⁾ tb IIIC T85°CT185°C Db	

¹⁾ Type of protection "Ex ia" is only applicable when the electrodes are located outside the "Ex tb" enclosure.


Table 8-9 SITRANS FM MAG3100 Ex

Certification	DN350 to DN2000	
ATEX/UKEX/IECEx	CSANe 24ATEX1107X	
	CSAE 24UKEX1032X	
	IECEx CSAE 24.0017X	
	© II 2 GD	
	Ex eb ia IIB or IIC T6T3 Gb	
	Ex ia tb IIIC T85°CT160°C Db	
FM Approvals	FM18US0062X	
	Class I Zone 1 AEx eb ia IIB or IIC T6T3 Gb	
	Class II Zone 21 AEx ia tb IIIC T85°C T160°C Db	
cCSAus	CSA 10.2317288	
	Class I Zone 1 AEx eb ia IIB or IIC T6T3 Gb	
	Class II Zone 21 AEx ia tb IIIC T85°C T160°C Db	

Table 8-10SITRANS FM MAG3100 standard

Certification	Marking	
FM Approvals	FM18US0060X	
	Class I Division 2 Groups A, B, C, D T3T6	
cCSAus	CSA 10.2317288	
	Class I Division 2 Groups A, B, C, D T3T6	

Compact version with SITRANS FM MAG6000I transmitter

Table 8-11 SITRANS FM MAG3100 Ex

Certification	Ex marking	
ATEX/UKEX/IECEx	Transmitter	
	CSANe 24ATEX1108X	
	CSAE 24UKEX1033X	
	IECEx CSAE 24.0018X	
	Electromagnetic flow sensor	
	CSANe 24ATEX1107X	
	CSAE 24UKEX1032X	
	IECEx CSAE 24.0017X	
	رچ)II 2 (1) GD	
	Ex db eb ¹⁾ ia ²⁾ [ia Ga] IIC T6T3 Gb	
	Or	
	Ex db eb ¹⁾ ia ²⁾ [ia IIC Ga] IIB T6T3 Gb	
	Ex ia ³⁾ tb [ia Da] IIIC T85°CT185°C Db	
FM Approvals	FM18US0062X	
	XP-IS Class I Division 1 Groups A, B, C, D	
	DIP Class II, III Division 1 Groups E, F, G	
	Class I Zone 1 AEx db eb ¹⁾ ia ²⁾ [ia Ga] IIC T6T3 Gb	
	Or	
	AEx db eb ¹⁾ ia ²⁾ [ia IIC Ga] IIB T6T3 Gb	
	Class II Zone 21 AEx ia ³⁾ tb [ia Da] IIIC T85°CT185°C Db	
cCSAus	CSA 10.2317288	
	Class I Zone 1 AEx db eb ¹⁾ ia ²⁾ [ia Ga] IIC T6T3 Gb	
	Or	
	AEx db eb ¹⁾ ia ²⁾ [ia IIC Ga] IIB T6T3 Gb	
	Class II Zone 21 AEx ia ³⁾ tb [ia Da] IIIC T85°CT185°C Db	

²⁾ Type of protection "Ex ia" is only applicable when the supply/data chamber is "Ex e and Ex ia" or when supply/data chamber is "Ex db" and the electrodes are outside of flow sensor "Ex db" enclosure.
 ³⁾ Type of protection "Ex ia" is only applicable when the electrodes are outside of flow sensor "Ex tb" enclosure.

DN350 to DN2000 MAG3100 "7ME6310"	
Certification	Ex marking
ATEX/UKEX/IECEx	Transmitter
	CSANe 24ATEX1108X
	CSAE 24UKEX1033X
	IECEx CSAE 24.0018X
	Electromagnetic flow sensor
	CSANe 24ATEX1107X
	CSAE 24UKEX1032X
	IECEx CSAE 24.0017X
	୍ଦ୍ରୋI 2 (1) G D
	Ex db eb ia [ia Ga] IIC T6T3 Gb
	Or
	Ex db eb ia [ia IIC Ga] IIB T6T3 Gb
	Ex ia tb [ia Da] IIIC T85°CT160°C Db
FM Approvals	FM18US0062X
	Class I Zone 1 Ex db eb ia [ia Ga] IIC T6T3 Gb
	Or
	Ex db eb ia [ia IIC Ga] IIB T6T3 Gb
	Class II Zone 21 Ex ia tb [ia Da] IIIC T85°CT160°C Db
cCSAus	CSA 10.2317288
	Class I Zone 1 Ex db eb ia [ia Ga] IIC T6T3 Gb
	Or
	Ex db eb ia [ia IIC Ga] IIB T6T3 Gb
	Class II Zone 21 Ex ia tb [ia Da] IIIC T85°CT160°C Db

Table 8-12 SITRANS FM MAG3100 Ex

Compact version with SITRANS FM MAG6000I / MAG5000 / MAG6000

Table 8-13	SITRANS FM MAG6000I standard

Certification	Marking	
FM Approvals	FM18US0060X	
	Class I Division 2 Groups A, B, C, D T3T6	
cCSAus	CSA 10.2317288	
	Class I Division 2 Groups A, B, C, D T3T6	

8.1.2 Electrical specifications

Remote versions

Connection	Electrical parameters	
	Intrinsic safety electrical parameters "Ex ia"	
Terminals 0, 81, 82, 83 & 84	<i>U</i> _i : 30 V ; <i>I</i> _i : 50 mA ; <i>P</i> _i : 0.5 W ; <i>C</i> _i : 50 nF ; <i>L</i> _i : 2 μH	
Sensor electrode		
	Increased safety electrical parameters "Ex eb"	
Terminals 85 & 86	Un = 30V (60 Vpk) ; In = 130 mA	
Supply		

Compact version with SITRANS FM MAG6000I transmitter

Note

Electrical parameters listed in the table below are specified in the Operating Instructions and in the certificates of the SITRANS FM MAG6000I transmitter.

Connection	7ME63x0-xxxxx-xDxx	7ME63x0-xxxxx-xExx
Terminals L & N	U _n = 2027 V DC	U _n = 115230 V AC
Supply	$U_{m} = 30 \text{ V DC}$	U _m = 253 V AC
	9 W	25 VA
	Intrinsic safety electrical para	meters "Ex ia"
Terminals 31 & 32	Passive mode configuration (I-O	UT PASSIVE)
Current Output (I-OUT)	<i>U</i> _i : 30 V ; <i>I</i> _i : 100 mA ; <i>P</i> _i : 1.2 W	; C _i : 18.82 nF ; L _i : 36 μH
	Active mode configuration (I-OL	JT ACTIVE)
	U _o : 30 V ; I _o : 87.8 mA ; P _o : 0.66 W	
	IIB	IIC
	C₀: 557.6 nF	C₀: 63.6 nF
	L _o : 18.41 mH	<i>L</i> ₀ : 4.57 mH
Terminals 44, 45 & 46	U _i : 30 V ; I _i : 200 mA ; P _i : 1.2 W	; C _i : 3.6 nF ; L _i : 0
Relay Output		
Terminals 56 & 57	U _i : 28 V ; I _i : 100 mA ; P _i : 1.2 W ; C _i : 14.4 nF ; L _i : 36 μH	
Frequency/pulse output		
Terminals 77 & 78	$U_i: 30 \text{ V}; P_i: 1.2 \text{ W}; C_i: 2.4 \text{ nF}; L_i: 0$	
Digital input		
Terminals 95 & 96	U _i : 17.5 V ; I _i : 380 mA ; P _i : 5.32	2 W ; C _i : 0 ; L _i : 0
Foundation Fieldbus/Profibus (FISCO)		
Terminals 91, 92, 93, 94 & 97	No connection permitted	

8.1.3 Temperature specifications for use in hazardous areas

The maximum allowable process fluid temperatures with respect to the marked temperature class and maximum surface temperature for the device in the following maximum ambient temperature are:

Remote and compact versions with SITRANS FM MAG6000I transmitter

Ambient tempera- ture	Maximum process tem-	Temperature class		
	perature	Gas	Dust	
-20°C to +60°C	-20°C to 80°C	Т6	T85°C	
	-20°C to 95°C	Т5	T100°C	
	-20°C to 130°C	T4	T135°C	
	-20°C to 150°C	Т3	T155°C	
-20°C to +50°C	-20°C to 180°C	Т3	T185°C	

Table 8-14 SITRANS FM MAG3100 (DN15 - DN300)

Table 8-15 SITRANS FM MAG3100 (DN350 - DN2000)

Ambient tempera-	Maximum process tem- perature	Temperature class		
ture		Gas	Dust	
-20°C to +60°C	-20°C to 75°C	T6	T85°C	
	-20°C to 90°C	T5	T100°C	
	-20°C to 125°C	T4	T135°C	
	-20°C to 150°C	Т3	T160°C	

8.1.4 Specific conditions of use

In general, it is required that:

- EN/IEC 60079-14 is considered for installation in hazardous areas.
- Appropriate cable connectors are used.
- Minimum 4 mm² cable is to be used for potential equalization.
- Sensor is connected to the potential equalization throughout the hazardous area.
- The device is not opened when energized and when an explosive atmosphere is present.
- Sensor must be fitted with certified cable glands and/or blanking elements with a compatible mode of protection appropriate for the intended use and correctly installed.
- Live maintenance is not permitted on intrinsically safe circuits housed inside the terminal box.
- The type PET5 Pillar Earth Terminal certified under IECEx BAS 09.0010U and Baseefa 09ATEX0035U is intended for both equipotential bonding and protective earthing connection.

- Cable gland and cable shall be rated at least +80°C.
- Sensor insulation thickness is max. 100 mm (only insulated sensors).

Further information and instructions including special conditions for safe installation and operation specified by each approval authority can be found in the relevant certificates at the product web page of SITRANS FM MAG3100.

Specific Conditions of Use ATEX/UKEX/IECEx

The external protective earth terminal kit is supplied loose. When installing on the process flange of the flow meter anti-vibration washer shall be included at both ends of the terminal adapter. The connection to the external protective earth terminal shall comply with the following:

- Leads connected to the earth terminal shall have insulation extending to within 3 mm of the terminal throat and the bare end of each lead shall not extend more than 3 mm beyond the other side of the slot and shall remain straight.
- The terminal cap shall be fully tightened down by the end user.
- Conductors of different sizes and configurations shall not be inserted into the same earth terminal throat/slot.

Increased safety 'Ex e' Conditions

For remote version, field wiring connections to terminals 85 and 86 housed inside the terminal box shall comply with the following:

- The wire conductors shall have a cross-sectional area as follows:
- Solid conductor: 0.5 to 4 mm²
- Stranded conductor: 1.5 to 4 mm²
- Flexible conductor: 0.5 to 4 mm²
 - No more than one single or multiple strand wire conductor shall normally be connected to each of the terminals. If multiple conductors are required, these shall be joined in a suitable manner, e.g. two conductors into a single insulated crimped boot lace ferrule.
 - The stripping length is 8 mm. The insulation on the wire conductors shall extend to within 1 mm of the metal of the terminal throat.
 - The terminal screws shall be tightened down with a torque between 0.5 Nm and 0.7 Nm.

For compact version, field wiring connections to supply terminals 'L' and 'N' housed inside the supply/data chamber shall comply with the following:

- The wire conductors shall have a cross-sectional area as follows:
- Solid conductor: 0.5 to 4 mm²

- Stranded conductor: 1.5 to 4 mm²
- Flexible conductor: 0.5 to 4 mm²
 - No more than one single or multiple strand wire conductor shall normally be connected to each of the terminals. If multiple conductors are required, these shall be joined in a suitable manner, e.g. two conductors into a single insulated crimped boot lace ferrule.
 - The stripping length is 8 mm. The insulation on the wire conductors shall extend to within 1 mm of the metal of the terminal throat.
 - The terminal screws shall be tightened down with a torque between 0.5 Nm and 0.7 Nm.

Live maintenance is not permitted.

Flameproof 'Ex d' Conditions

- 1. The flameproof joints are not intended to be repaired.
- 2. If the transmitter is supplied with previously certified flameproof cable entry devices it shall be verified that the selection and installation satisfy the local relevant installation code of practice.

Dust ignition protection by enclosure 'Ex t' Conditions

- 1. For remote version, when the equipment is installed in dust explosion hazardous area the cable entry devices shall be fitted with interface sealing gasket.
- 2. Under certain extreme circumstances, the non-metallic coating may generate an ignitioncapable level of electrostatic charge. Therefore, the equipment shall not be installed in a location where the external conditions are conducive to the build-up of electrostatic charge on such surfaces. In addition, the equipment shall only be cleaned with a damp cloth.

Intrinsically safe 'Ex i' Conditions

- For compact version, the equipment can be supplied with its Current Output (Terminals 31 and 32) configured in either an Active Mode (I-OUT ACTIVE) or a Passive Mode (I-OUT PASSIVE), the configured mode of any particular transmitter being marked on a label fitted to the inside of the mains supply/data interface terminal chamber lid. The user shall refer to this label to determine the configured mode of a particular transmitter to determine which one of the two sets of parameters specified for the Current Output is applicable. The mode of a transmitter is not user configurable.
- 2. For compact version, the equipment shall only be connected (Terminals L1 and N) to a supply circuit that has a maximum prospective short circuit current of 35 A a.c. or less.
- 3. For compact version, the equipment internal circuits at the following terminals are not capable of withstanding a 500 V r.m.s. a.c. test to earth as required by clause 6.3.12 of EN/IEC 60079-11:2011. This must be taken into account in any equipment installation:
- Terminals 77 and 78 Digital input
- Terminals 95 and 96 Foundation Fieldbus/Profibus (FISCO)

8.2 Cable data

Description

Cable for standard electrode or coil	Ē
Electrode cable, double shielded	- C
Cable kit with standard coil cable and electrode cable double shielded (also available as low noise cable for MAG 1100 sensor)	

Standard applications

		Coil cable	Standard elec- trode cable
Basic data	No. of conductors	2	3
	Min. sqr. area	0.5 mm ²	0.2 mm ²
	Shield	Yes	Yes
	Max. capacitance	N/A	350 pF/m
Max. cable loop resistance	Media temperature:		
	< 100 °C (212 °F)	40 Ω	N/A
	> 200 °C (392 °F)	6 Ω	N/A
Cable glands on sensor	M20x1.5 gland - Cable ø 5	to 13 mm (0.20 to 0.51	inches)
and transmitter	1/2 NPT gland - cable ø 5 to 9	9 mm (0.20 to 0.35 incl	nes)

Table 8-16 Technical data, standard application cables

Special applications, for example low conductivity or electrical noise

Table 8-17 Technical data, special application cables

		Coil cable	Special electrode cable
Basic data	No. of conductors	3	3
	Sqr. area	1.5 mm ²	0.25 mm ²
	Shield	Yes	Double
	Color code	Brown, blue, black	Brown, blue, black
	Outside color	Grey	Grey
	Ext. diameter	7.8 mm	8.1 mm
	Conductor	Flexible CU	Flexible CU
	Isolation material	PVC	PVC
Ambient temperature	Flexible installation	-5 to +70°C (23 to 158°F)	-5 to +70°C (23 to 158°F)
	Non-flexible installation	-30 to +70°C (-22 to 158°F)	-30 to +70°C (-22 to 158°F)

8.3 Pressure / temperature range

		Coil cable	Special electrode cable
Cable parameter	Capacity	161.50 pF/m	N/A
	Inductance	0.583 μH/m	N/A
	L/R	43.83 þΗ/Ω	N/A

8.3 Pressure / temperature range

The following diagrams and tables show the maximum allowable working pressure at various working temperatures. For maximum allowable working pressure (MAWP) at 20 °C and at maximum working temperature, see the nameplate on the device.

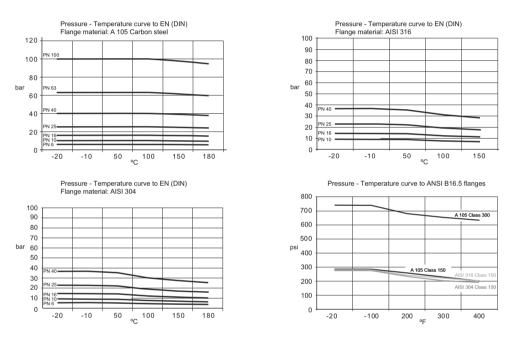
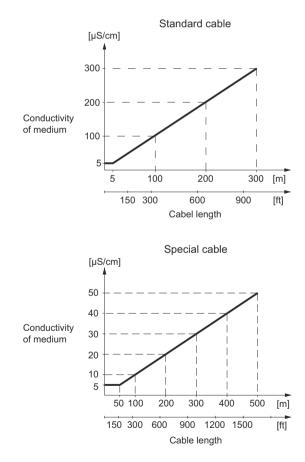


Table 8-18 Metric measures (pressure in bar) - Sizes 25 mm, 40 mm and >300 mm

Flange specifi-	Flange rating	Temperature (°C)			
cations		-5	10	50	90
EN 1092-1	PN 10	10.0	10.0	9.7	9.4
	PN 16	16.0	16.0	15.5	15.1
	PN 40	40.0	40.0	38.7	37.7
ANSI B16.5	150 lb	19.7	19.7	19.3	18.0
AWWA C-207	Class D	10.3	10.3	10.3	10.3

8.4 Process fluid conductivity

Flange specifi-	Flange rating	Temperature (°F)								
cations		23	50	120	200					
EN 1092-1	PN 10	145	145	141	136					
	PN 16	232	232	225	219					
	PN 40	580	580	561	547					
ANSI B16.5	150 lb	286	286	280	261					
AWWA C-207	Class D	150	150	150	1501					


Table 8-19 Imperial measures (pressure in psi) - Sizes 1", 1¹/₂" and >12"

8.4 Process fluid conductivity

Compact installation

Liquids with an electrical conductivity $\ge 5 \ \mu$ S/cm.

Remote installation

Empty pipe detection

The installation has to fulfill the following limitations for usage of the empty pipe detection function:

- media conductivity \geq 20 µS/cm
- length of cable at remote installation \leq 50 (150 ft)
- special shield cable must be used

Note for SITRANS FM MAG1100 sizes DN 2 and DN 3:

- empty pipe detection is not available
- media conductivity \ge 30 μ S/cm

Note for SITRANS FM MAG5000/6000 CT (FW 3.03):

• empty pipe detection is not available

8.5 Liner selection

Table 8-20

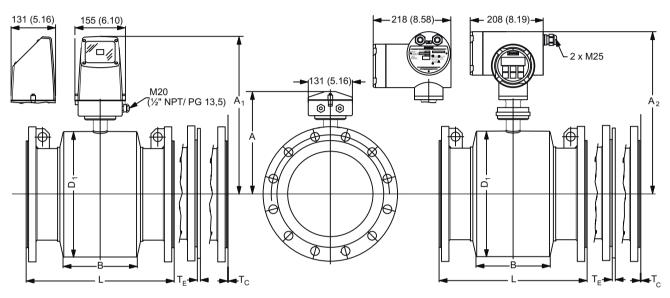
Liner	Applications
EPDM	Drinking Water, Low abrasive media, Food & Beverage
Ebonite	Drinking Water, Wastewater, Fine low abrasive media
PTFE	Drinking Water, Wastewater, Chemicals, Food & Beverage, Pulp & Paper
PFA	Drinking Water, Wastewater, Chemicals, Food & Beverage, Pulp & Paper
Linatex	Abrasive media
Soft rubber	Drinking Water, Wastewater, Abrasive media, Chemicals

8.6 Electrode selection

Tab	le	8-21

Electrodes	Applications	Chemical Resistance
Stainless Steel	Drinking Water, Wastewater, Chemi- cals, Food & Beverage, Pulp & Paper	Reducing acids, Oxidicing acids, Or- ganic acids, Alkalis, Diluted salts
Hastelloy C22	Drinking Water, Wastewater, Abrasive Liquids, Chemicals, Food & Beverage, Pulp & Paper	Reducing acids, Oxidicing acids, Or- ganic acids, Alkalis, Diluted salts
Hastelloy C276	Drinking Water, Wastewater, Abrasive Liquids, Chemicals, Food & Beverage, Pulp & Paper	Reducing acids, Oxidicing acids, Or- ganic acids, Alkalis, Diluted salts

8.6 Electrode selection


Electrodes	Applications	Chemical Resistance
Titanium	Drinking Water, Wastewater, Chemi- cals, Food & Beverage, Pulp & Paper	Reducing acids, Oxidicing acids, Or- ganic acids, Alkalis, Diluted salts
Tantalum	Drinking Water, Wastewater, Chemi- cals, Food & Beverage, Pulp & Paper	Reducing acids, Oxidicing acids, Or- ganic acids, Alkalis, Diluted salts
Platinum	Drinking Water, Wastewater, Chemi- cals, Food & Beverage, Pulp & Paper	Reducing acids, Oxidicing acids, Or- ganic acids, Alkalis, Diluted salts

Technical specifications

8.6 Electrode selection

9

Dimension drawings

Table 9-1	Dimensions
-----------	------------

Nominal size		A ¹⁾		A ₁ /A ₂ ⁸⁾	A ₁ /A ₂ ⁸⁾		В		
mm	inch	mm	inch	mm	inch	mm	inch	mm	inch
15	1/2	187	7.4	341/338	13.4	59	2.4	104	4.1
25	1	187	7.4	341/338	13.4	59	2.4	104	4.1
32	1¼	197	7.8	351/348	13.7	82	3.3	114	4.5
40	11/2	197	7.8	351/348	13.7	82	3.3	124	4.9
50	2	205	8.1	359/356	14.1	72	2.9	139	5.5
65	21/2	212	8.3	366/363	14.3	72	2.9	154	6.1
80	3	222	8.7	376/373	14.7	72	2.9	174	6.9
100	4	242	9.5	396/393	15.5	85	3.4	214	8.5
125	5	255	10.0	409/406	16.0	85	3.4	239	9.5
150	6	276	10.9	430/427	16.9	85	5.4	282	11.1
200	8	304	12.0	458/455	18.0	137	5.4	338	13.4
250	10	332	13.1	486/483	19.1	157	6.2	393	15.5
300	12	357	14.1	511/508	20.0	157	6.2	444	17.5
350	14	362	14.3	516/513	20.2	270	10.7	451	17.8
400	16	387	15.2	541/538	21.2	270	10.7	502	19.8
450	18	418	16.5	572/569	22.4	310	12.2	563	22.2
500	20	443	17.4	597/594	23.4	350	13.8	614	24.2
600	24	494	19.4	648/645	25.4	320	12.6	715	28.2

Dimension drawings

9.1 Dimensions and weight

Nominal size		A ¹⁾	A ¹⁾		A ₁ /A ₂ ⁸⁾		В		D ₁	
mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	
700	28	544	21.4	698/695	27.4	450	17.8	816	32.2	
750	30	571	22.5	725/722	28.5	556	21.9	869	34.3	
800	32	606	23.9	760/757	30.0	560	22.1	927	36.5	
900	36	653	25.7	807/804	31.7	630	24.9	1032	40.7	
1000	40	704	27.7	858/855	35.7	670	26.4	1136	44.8	
1050	42	704	27.7	858/855	35.7	670	26.4	1136	44.8	
1100	44	755	29.7	904/901	35.7	770	30.4	1238	48.8	
1200	48	810	31.9	964/961	37.9	792	31.2	1348	53.1	
1400	54	925	36.4	10/79/1076	42.4	1000	39.4	1574	62.0	
1500	60	972	38.2	1126/1123	44.3	1020	40.2	1672	65.9	
1600	66	1025	40.4	1179/1176	46.3	1130	44.5	1774	69.8	
1800	72	1123	44.2	1277/1274	50.2	1250	49.3	1974	77.8	
2000	80	1223	48.1	1377/1374	55.0	1375	54.2	2174	85.6	
2200	88	1353	53.3	1507/-	59.3	1496	58.9	2400	94.5	

¹⁾:14.5 mm shorter with AISI terminal box (Ex and high temperature version)

Nominal size		L ²⁾	L ²⁾												
		EN 10	92-1-201												
		PN 6 / PN 10			PN 16 / PN 16 non-PED		PN 25		PN 40		PN 63)		
mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch		
15	1	-	-	-	-	-	-	200	7.9	-	-	-	-		
25	1	-	-	-	-	-	-	200	7.9	-	-	260	10.3		
32	1¼	-	-	-	-	-	-	200	7.9	-	-	280	11.1		
40	1½	-	-	-	-	-	-	200	7.9	-	-	280	11.1		
50	2	-	-	-	-	-	-	200	7.9	276	10.9	300	11.9		
65	21/2	200	7.9	200/-	7.9/ -	-	-	200	7.9	320	12.6	350	13.8		
80	3	200	7.9	200/-	7.9/ -	-	-	272	10.8	323	12.8	340	13.4		
100	4	250	9.8	250/ -	9.8/ -	-	-	250	9.9	380	15.0	400	15.7		
125	5	250	9.8	250/ -	9.8/ -	-	-	250	9.9	420	16.6	450	17.7		
150	6	300	11.8	300/ -	11.8/ -	-	-	300	11.9	415	16.4	450	17.7		
200	8	350	13.8	350/ -	13.8/ -	350	13.8	350	13.8	480	18.9	530	20.9		
250	10	450	17.7	450/ -	17.7/ -	450	17.7	450	17.8	550	21.7	620	24.4		
300	12	500	19.7	500/ -	19.7/ -	500	19.7	500	19.7	600	23.6	680	26.8		
350	14	550	21.7	550/ -	21.7/ -	550	21.7	550	21.7	-	-	-	-		
400	16	600	23.6	600/ -	23.6/ -	600	23.6	600	23.7	-	-	-	-		
450	18	600	23.6	600/ -	23.6/ -	600	23.6	600	23.7	-	-	-	-		
500	20	600	23.6	600/ -	23.6/ -	625	24.6	680	26.8	-	-	-	-		
600	24	600	23.6	600/ -	23.6/ -	750	30.0	800	31.5	-	-	-	-		

Nominal size		L ²⁾												
		EN 109	2-1-201											
		PN 6/	PN 6 / PN 10		PN 16 / PN 16 non-PED		PN 25		PN 40			PN 100		
mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	
700	28	700	27.6	875 / 700	31.5 <i> </i> 27.6	800	31.5	-	-	-	-	-	-	
750	30	-	-	-	-	-	-	-	-	-	-	-	-	
800	32	800	31.5	1000 / 800	39.4 <i>1</i> 31.5	900	35.4	-	-	-	-	-	-	
900	36	900	35.4	1125 <i> </i> 900	49.2 <i>1</i> 35.4	1000	39.4	-	-	-	-	-	-	
1000	40	1000	39.4	1250 <i>1</i> 1000	49.2 <i>1</i> 39.4	1100	43.4	-	-	-	-	-	-	
1050	42	-	-	-	-	-	-	-	-	-	-	-	-	
1100	44	-	-	-	-	-	-	-	-	-	-	-	-	
1200	48	1200	47.2	1500 <i> </i> 1200	59.1 <i>1</i> 47.2	1300	51.2	-	-	-	-	-	-	
1400	54	1400	55.1	- / 1400	-/55.1	-	-	-	-	-	-	-	-	
1500	60	1500	59.1	- / 1500	-/59.1	-	-	-	-	-	-	-	-	
1600	66	1600	63.0	- / 1600	-/63.0	-	-	-	-	-	-	-	-	
1800	72	1800	70.9	- / 1800	-/70.9	-	-	-	-	-	-	-	-	
2000	80	2000	78.7	- / 2000	-/78.7	-	-	-	-	-	-	-	-	
2200	88	2200	86.6	-	-	-	-	-	-	-	-	-	-	

²⁾: When grounding flanges are used, the thickness of the grounding flange must be added to the built-in length

Nomir	nal size	L ³⁾																
		ANSI 1	6.5	ANSI 16.5		ANSI 1	6.5	AS 212	AS 2129 E		AWWA		JIS K10		JIS K20			
			Class 150		lass 150 Class		Class 300		Class 600		AS 4087		C-207					
									PN 16, 21, 35		Class D							
mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch			
15	1	200	7.9	200	7.9	-	-	200	7.9	-	-	200	7.9	200	7.9			
25	1	200	7.9	200	7.9	280	11.0	200	7.9	-	-	200	7.9	200	7.9			
32	11⁄4	200	7.9	200	7.9	300	11.8	200	7.9	-	-	200	7.9	240	9.5			
40	11/2	200	7.9	200	7.9	320	12.6	200	7.9	-	-	200	7.9	240	9.5			
50	2	200	7.9	200	7.9	330	13.0	200	7.9	-	-	200	7.9	240	9.5			
65	21/2	200	7.9	272	10.8	370	14.6	200	7.9	-	-	200	7.9	272	10.7			
80	3	272	10.8	272	10.8	350	13.8	2004)	7.9	-	-	2008)	7.9	272 ⁸⁾	10.7			
100	4	250	9.9	310	12.2	460	18.1	250	9.9	-	-	250	9.9	310	12.2			

Nomir	nal size	L ³⁾													
		ANSI 1 Class 1		ANSI ² Class 2		ANSI 1 Class		AS 212 AS 408		AWWA C-207	N	JIS K1	0	JIS K2	0
								PN 16,	21, 35	Class [)				
mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch
125	5	250	9.9	335	13.1	480	18.9	250	9.9	-	-	250	9.9	335	13.2
150	6	300	11.8	300	11.9	500	19.7	300	11.9	-	-	300	11.9	300	11.9
200	8	350	13.8	350	13.8	600	23.6	350	13.8	-	-	350	13.8	350	13.8
250	10	450	17.7	450	17.8	600	23.6	450	17.8	-	-	450	17.8	450	17.8
300	12	500	19.7	500	19.7	700	27.6	500	19.7	-	-	500	19.7	500	19.7
350	14	550	21.7	550	21.7	800	31.5	550	21.7	-	-	550	21.7	550	21.7
400	16	600	23.7	600	23.7	820	32.3	600	23.7	-	-	600	23.7	600	23.7
450	18	600	23.7	640	23.7	-	-	600	23.7	-	-	600	23.7	640	25.2
500	20	600	23.7	730	28.7	-	-	600 ⁵⁾	23.7	-	-	600	23.7	680	26.8
600	24	600	23.7	860	33.8	-	-	600 ⁶⁾	23.7	-	-	600	23.7	800	31.5
700	28	700	31.5	-	-	-	-	700 ⁷⁾	27.6	700	27.6	-	-	-	-
750	30	950	37.4	-	-	-	-	750 ⁷⁾	29.6	750	29.6	-	-	-	-
800	32	900	35.5	-	-	-	-	8007)	31.5	800	31.5	-	-	-	-
900	36	1100	43.4	-	-	-	-	900 ⁷⁾	35.5	900	35.5	-	-	-	-
1000	40	1100	43.4	-	-	-	-	10007)	39.4	1000	39.4	-	-	-	-
1050	42	-	-	-	-	-	-	-	-	1000	39.4	-	-	-	-
1100	44	-	-	-	-	-	-	-	-	1100	43.4	-	-	-	-
1200	48	1400	55.2	-	-	-	-	12007)	47.3	1200	47.3	-	-	-	-
1400	54	-	-	-	-	-	-	-	-	1400	55.2	-	-	-	-
1500	60	-	-	-	-	-	-	-	-	1500	59.1	-	-	-	-
1600	66	-	-	-	-	-	-	-	-	1600	63.0	-	-	-	-
1800	72	-	-	-	-	-	-	-	-	1800	70.9	-	-	-	-
2000	80	-	-	-	-	-	-	-	-	2000	78.8	-	-	-	-
2200	88	-	-	-	-	-	-	-	-	2200	86.6	-	-	-	-

³⁾: When grounding flanges are used, the thickness of the grounding flange must be added to the built-in length

⁴⁾: PN 35 DN 80 = 272 mm (not according to ISO 13359)

⁵⁾: PN 35 DN 500 = 680 mm

⁶⁾: PN 35 DN 600 = 750 mm

⁷⁾: Not AS 4087 PN 21 or PN 35

Nominal size		T _c ³⁾		T _E ³⁾		T _F ³⁾		Wgt. ⁴⁾	
mm	inch	mm	inch	mm	inch	mm	inch	kg	lbs
15	1	-	-	6	0.3	2	0.1	4	9
25	1	1.2	0.1	6	0.3	2	0.1	5	11
32	11⁄4	-	-	-	-	2	0.1	7	15

Nor	ninal size	T _c ³⁾	T _c ³⁾			T _F ³⁾	T _F ³⁾		
mm	inch	mm	inch	mm	inch	mm	inch	kg	lbs
40	11/2	1.2	0.1	6	0.3	2	0.1	8	17
50	2	1.2	0.1	6	0.3	2	0.1	9	20
65	21/2	1.2	0.1	6	0.3	2	0.1	11	24
80	3	1.2	0.1	6	0.3	2	0.1	12	26
100	4	1.2	0.1	6	0.3	2	0.1	16	35
125	5	1.2	0.1	6	0.3	2	0.1	19	42
150	6	1.2	0.1	6	0.3	2	0.1	27	60
200	8	1.2	0.1	8	0.3	2	0.1	40	88
250	10	1.2	0.1	8	0.4	2	0.1	60	132
300	12	1.6	0.1	8	0.4	2	0.1	80	176
350	14	1.6	0.1	8	0.4	-	-	110	242
400	16	1.6	0.1	10	0.4	-	-	125	275
450	18	1.6	0.1	10	0.4	-	-	175	385
500	20	1.6	0.1	10	0.4	-	-	200	440
600	24	1.6	0.1	10	0.4	-	-	287	633
700	28	2.0	0.1	-	-	-	-	330	728
750	30	2.0	0.1	-	-	-	-	360	794
800	32	2.0	0.1	-	-	-	-	450	992
900	36	2.0	0.1	-	-	-	-	530	1168
1000	40	2.0	0.1	-	-	-	-	660	1455
1050	42	2.0	0.1	-	-	-	-	660	1455
1100	44	2.0	0.1	-	-	-	-	1140	2513
1200	48	2.0	0.1	-	-	-	-	1180	2601
1400	54	2.0	0.1	-	-	-	-	1600	3528
1500	60	3.0	0.1	-	-	-	-	2460	5423
1600	66	3.0	0.1	-	-	-	-	2525	5566
1800	72	3.0	0.1	-	-	-	-	2930	6460
2000	80	3.0	0.1	-	-	-	-	3665	8080
2200	88	-	-	-	-	-	-	5690 ⁵⁾	12544 ⁵⁾

³⁾: $T_c = Type C$ grounding ring

 T_E = Type E grounding ring (included and factory-mounted on high-temperature 180 °C PTFE sensor)

 $T_F = Flat type grounding rings$

⁴⁾: Weights are approx. (for PN 16) without transmitter

⁵⁾: Approx. weight for AWWA without transmitter

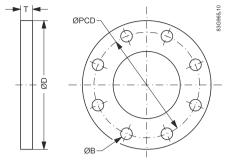


Figure 9-1 Flange mating dimensions

Table 9-5Flange mating dimensions (metric)

DN	Dimension	s (mm)	Bolting	Bolting		
mm	D	PCD	Т	В	Holes	Bolts
PN6	·					·
1400	1630	1560	56	36	36	M33
1500	1730	1660	80	36	36	M33
1600	1830	1760	63	36	40	M33
1800	2045	1970	69	39	44	M36
2000	2265	2180	74	42	48	M39
PN10	·	•	·	·	·	·
200	340	295	24	22	8	M20
250	395	350	26	22	12	M20
300	445	400	26	22	12	M20
350	505	460	30	22	16	M20
400	565	515	32	26	16	M24
450	615	565	36	26	20	M24
500	670	620	38	26	20	M24
600	780	725	42	30	20	M27
700	895	840	35	30	24	M27
800	1015	950	38	33	24	M30
900	1115	1050	38	33	28	M30
1000	1230	1160	44	36	28	M33
1200	1455	1380	55	39	32	M36
1400	1675	1590	65	42	36	M39
1500	1785	1700	105	42	36	M39
1600	1915	1820	75	48	40	M45
1800	2115	2020	85	48	44	M45
2000	2325	2230	90	48	48	M45
PN16			ł			
50	165	125	20	18	4	M16
65	185	145	20	18	8	M16
80	200	160	20	18	8	M16
100	220	180	22	18	8	M16

DN	Dimension	s (mm)			Bolting	Bolting		
mm	D	PCD	Т	В	Holes	Bolts		
125	250	210	22	18	8	M16		
150	285	240	24	22	8	M20		
200	340	295	26	22	12	M20		
250	405	355	30	26	12	M24		
300	460	410	36	26	12	M24		
350	520	470	37	26	16	M24		
400	580	525	41	30	16	M27		
450	640	585	46	30	20	M27		
500	715	650	50	33	20	M30		
600	840	770	56	36	20	M33		
700	910	840	40	36	24	M33		
800	1025	950	41	39	24	M36		
900	1125	1050	48	39	28	M36		
1000	1255	1170	59	42	28	M39		
1200	1485	1390	78	48	32	M45		
1400	1685	1590	84	48	36	M45		
1500	1820	1710	130	56	36	M45		
1600	1930	1820	102	56	40	M52		
1800	2130	2020	110	56	44	M52		
2000	2345	2230	124	62	48	M56		
PN40								
15	95	65	14	14	4	M12		
25	115	85	16	14	4	M12		
40	150	110	18	18	4	M16		
150 lb								
15	89	60	12	16	4	M12		
25	108	79	16	16	4	M12		
40	127	98	19	16	4	M12		
50	150	121	21	19	4	M16		
65	180	140	24	19	4	M16		
80	190	152	26	19	4	M16		
100	230	191	27	19	8	M16		
125	255	216	28	22	8	M20		
150	279	241	31	22	8	M20		
200	343	298	34	22	8	M20		
250	406	362	38	25	12	M24		
300	483	432	42	25	12	M24		
350	535	476	35	29	12	M27		
400	595	540	37	29	16	M27		
450	635	578	40	32	16	M30		
500	700	635	43	32	20	M30		
600	815	749	48	35	20	M33		

Dimension drawings

DN	Dimension	s (mm)			Bolting	
mm	D	PCD	Т	В	Holes	Bolts
AWWA						
700	927	864	33	35	28	M33
750	984	914	35	35	28	M33
800	1060	978	38	41	28	M39
900	1168	1086	41	41	32	M39
1000	1289	1200	41	41	36	M39
1050	1346	1257	45	41	36	M39
1100	1403	1315	45	41	40	M39
1200	1511	1422	48	41	44	M39
1400	1683	1594	54	48	44	M45
1500	1854	1759	57	48	52	M45
1600	2032	1930	64	48	52	M45
1800	2197	2096	67	48	60	M45
2000	2362	2261	70	54	64	M52
AS 4087 PN	N16	•				·
50	150	114	20	18	4	M16
65	165	127	20	18	4	M16
80	185	146	20	18	4	M16
100	215	178	20	18	4	M16
150	280	235	23	18	8	M16
200	335	292	24	18	8	M16
250	405	356	30	22	8	M20
300	455	406	33	22	12	M20
350	525	470	30	26	12	M24
400	580	521	30	26	12	M24
450	640	584	30	26	12	M24
500	705	641	38	26	16	M24
600	825	756	48	30	16	M27
700	910	845	56	30	20	M27
800	1060	984	56	36	20	M33
900	1175	1092	66	36	24	M33
1000	1255	1175	66	36	24	M33
1200	1490	1410	76	36	32	M33
К10						
15	95	70	12	15	4	M12
25	125	90	16	19	4	M16
40	140	105	18	19	4	M16
50	155	120	20	19	4	M16
65	175	140	20	19	4	M16
80	185	150	20	19	8	M16
100	210	175	20	19	8	M16
125	250	210	22	23	8	M20

DN	Dimensior	ns (mm)			Bolting	Bolting		
mm	D	PCD	Т	В	Holes	Bolts		
150	280	240	22	23	8	M20		
200	330	290	22	23	12	M20		
250	400	355	24	25	12	M22		
300	445	400	24	25	16	M22		
350	490	445	26	25	16	M22		
400	560	510	28	27	16	M24		
450	620	565	30	27	20	M24		
500	675	620	30	27	20	M24		
600	795	730	32	33	24	M30		

Dimension drawings

Product documentation and support

A.1 Product documentation

Process instrumentation product documentation is available in the following formats:

- Certificates (<u>http://www.siemens.com/processinstrumentation/certificates</u>)
- Downloads (firmware, EDDs, software) (<u>http://www.siemens.com/processinstrumentation/</u> <u>downloads</u>)
- Catalog and catalog sheets (<u>http://www.siemens.com/processinstrumentation/catalogs</u>)
- Manuals (<u>http://www.siemens.com/processinstrumentation/documentation</u>) You have the option to show, open, save, or configure the manual.
 - "Display": Open the manual in HTML5 format
 - "Configure": Register and configure the documentation specific to your plant
 - "Download": Open or save the manual in PDF format
 - "Download as html5, only PC": Open or save the manual in the HTML5 view on your PC

You can also find manuals with the Mobile app at Industry Online Support (<u>https://support.industry.siemens.com/cs/ww/en/sc/2067</u>). Download the app to your mobile device and scan the device ID link.

Product documentation by serial number

Using the PIA Life Cycle Portal, you can access the serial number-specific product information including technical specifications, spare parts, calibration data, or factory certificates.

Entering a serial number

- 1. Open the PIA Life Cycle Portal (<u>https://www.pia-portal.automation.siemens.com</u>).
- 2. Select the desired language.
- 3. Enter the serial number of your device. The product documentation relevant for your device is displayed and can be downloaded.

To display factory certificates, if available, log in to the PIA Life Cycle Portal using your login or register.

Scanning an ID link

- 1. Scan the ID link on your device with a mobile device.
- 2. Click "PIA Portal".

To display factory certificates, if available, log in to the PIA Life Cycle Portal using your login or register.

A.2 Technical support

A.2 Technical support

Technical support

If this documentation does not completely answer your technical questions, you can enter a Support Request (<u>http://www.siemens.com/automation/support-request</u>).

For help creating a support request, view this video here (www.siemens.com/opensr).

Additional information on our technical support can be found at Technical Support (<u>http://</u><u>www.siemens.com/automation/csi/service</u>).

Service & support on the Internet

In addition to our technical support, Siemens offers comprehensive online services at service & support (<u>http://www.siemens.com/automation/serviceandsupport</u>).

Contact

If you have further questions about the device, contact your local Siemens representative, by doing the following:

- 1. Visit Contact at Siemens (http://www.automation.siemens.com/partner).
- 2. Select "All Products and Branches" > "Products & Services" > "Industrial automation".
- 3. Choose either "Process analytics" or "Process instrumentation", depending on your product.
- 4. Select the product category ("Pressure measurement", for example), then select your product.
- 5. Click "Search". The contacts for your product in all regions display.

Contact address for business unit: Siemens AG Digital Industries Process Automation Östliche Rheinbrückenstr. 50 76187 Karlsruhe, Germany

Appendix

Dimension-dependent factory settings

Table B-1 50 Hz version

D	N		Qm	ıax		Volume/	Pulse unit	Totalizer
mm	Inch	Fac. set- tings	Min.	Max.	Unit	pulse		unit
15	1/2	2000	159	6361	l/h	1	I	I
25	1	5000	441	17671	l/h	10	I	I
32	1¼	8270	724	28953	l/h	10	I	I
40	1½	12	1.1	45	m³/h	10	I	I
50	2	20	1.7	70	m³/h	10	I	I
65	21/2	30	2.9	119	m³/h	100	I	I
80	3	50	4.5	180	m³/h	100	I	I
100	4	120	7	282	m³/h	100	I	I
125	5	180	11	441	m³/h	100	I	m³
150	6	250	15.9	636	m³/h	100	I	m³
200	8	400	28.2	1130	m³/h	1	m ³	m³
250	10	700	44.1	1767	m³/h	1	m ³	m³
300	12	1000	63.6	2544	m³/h	1	m ³	m³
350	14	1200	86.5	3463	m³/h	1	m ³	m³
400	16	1800	113	4523	m³/h	1	m ³	m³
450	18	2000	143.1	5725	m³/h	1	m ³	m³
500	20	3000	176.7	7068	m³/h	1	m ³	m³
600	24	4000	254.4	10178	m³/h	10	m ³	m³
700	28	5000	346.3	13854	m³/h	10	m ³	m ³
750	30	6000	397.6	15904	m³/h	10	m ³	m³
800	32	7000	452.3	18095	m³/h	10	m ³	m³
900	36	9000	572.5	22902	m³/h	10	m ³	m³
1000	40	12000	706.8	28274	m³/h	10	m ³	m³
1050	42	12000	706.8	28274	m³/h	10	m ³	m³
1100	44	14000	855.2	34211	m³/h	10	m ³	m³
1200	48	15000	1017.8	40715	m³/h	10	m ³	m³
1400	54	25000	1385.4	55417	m³/h	10	m ³	m³
1500	60	30000	1590.4	63617	m³/h	10	m ³	m³
1600	66	35000	1809.5	72382	m³/h	10	m ³	m³
1800	72	40000	2290.2	91608	m³/h	10	m ³	m³

C	DN		Qm	iax	Volume/	Pulse unit	Totalizer	
mm	Inch	Fac. set- tings	Min.	Max.	Unit	pulse		unit
2000	78	45000	2827.4	113097	m³/h	10	m³	m³
2200	88	50000	3421.2	136848	m³/h	10	m ³	m³

Table B-2 60 Hz version

D	N		Qn	ıax		Volume/	Pulse unit	Totalizer
mm	Inch	Fac. set- tings	Min.	Max.	Unit	pulse		unit
15	1/2	8.8	0.7	28.0	US GPM	1	US G	US G
25	1	22	1.9	77.8	US GPM	1	US G	US G
32	11⁄4	36.4	3.2	127.5	US GPM	1	US G	US G
40	11/2	52	4.9	199.1	US GPM	1	US G	US G
50	2	88	7.7	311.2	US GPM	1	US G	US G
65	21/2	132	13.1	525.9	US GPM	1	US G	US G
80	3	220	19.9	796.7	US GPM	1	US G	US MG
100	4	528	31.1	1244.8	US GPM	1	US G	US MG
125	5	793	48.6	1945.1	US GPM	1	US G	US MG
150	6	1101	70	2800.9	US GPM	1	US G	US MG
200	8	1761	124.4	4979.5	US GPM	1	US G	US MG
250	10	3082	194.5	7780.5	US GPM	1	US G	US MG
300	12	4402	280	11203.9	US GPM	1	US G	US MG
350	14	5283	381.2	15249.7	US GPM	1	US G	US MG
400	16	7925	497.9	19918.1	US GPM	1	US G	US MG
450	18	8806	630.2	25208.8	US GPM	1	US G	US MG
500	20	13209	778	31122	US GPM	1	US G	US MG
600	24	17611	1120.3	44815.7	US GPM	10	US G	US MG
700	28	19812	1524.9	60999.1	US GPM	10	US G	US MG
750	30	22014	1750.6	70024.5	US GPM	10	US G	US MG
800	32	30820	1991.8	79672.4	US GPM	10	US G	US MG
900	36	39626	2522.8	100835.3	US GPM	10	US G	US MG
1000	40	52834	3112.2	124488.1	US GPM	10	US G	US MG
1050	42	52834	3431.2	137248.1	US GPM	10	US G	US MG
1100	44	61640	3765.7	150630.6	US GPM	10	US G	US MG
1200	48	66043	4481	179262.9	US GPM	10	US G	US MG
1400	54	110072	6099.9	243993.7	US GPM	1000	US G	US MG
1500	60	132086	7002.4	280098.3	US GPM	1000	US G	US MG
1600	66	154100	7967.2	318689.6	US GPM	1000	US G	US MG
1800	72	176115	10083.5	403341.5	US GPM	1000	US G	US MG
2000	78	198129	12448.8	497952.5	US GPM	1000	US G	US MG
2200	88	220143	15063	602522.3	US GPM	1000	US G	US MG

DN	Inch	MAG3100 / MAG3100HT /MAG3100P		
		Resistance	Tolerance	
15	1/2	108	8	
25	1	90	7	
32	11⁄4	92	9	
40	11/2	92	9	
50	2	92	9	
65	21/2	100	9	
80	3	94	9	
100	4	92	9	
125	5	92	9	
150	6	94	9	
200	8	90	9	
250	10	92	9	
300	12	100	9	
350	14	110.6	9	
400	16	112.2	9	
450	18	112.8	9	
500	20	118	9	
600	24	130	9	
700	28	124	9	
750	30	153.2	9	
800	32	129.4	9	
900	36	127.6	9	
1000	40	132.2	9	
1050	42	134.4	9	
1100	44	134.4	9	
1200	48	125	9	
1400	54	137	9	
1500	60	132	9	
1600	66	141	9	
1800	72	144	9	
2000	78	146.8	9	
2200	88	144	9	

Table B-3 Coil resistance [Ω]

Index

Α

Abrasive liquids, 27, 42 Add-on modules, (See Communication module) Ambient temperatures, 61 Applications, 17

С

Cable specifications, 44, 71 Catalog catalog sheets, 87 Cathodic protection, 40 Certificates, 9, 87 Cleaning, 51 Coil insulation check, 55 Coil resistance check, 55 Communication modules, 17 Customer Support, (Refer to Technical support)

D

Design, 18, 62 Device Identification, 19, 20 Inspection, 19 Dimensions, 77 Document history, 5 Downloads, 87

Ε

Electrical connection Cable specifications, 44 In hazardous area, 43 Remote installations, 45 Safety instructions, 43 Electrode Material, 18, 74 Electrode resistance check, 56 Empty pipe detection, 27

F

Factory settings Dimension dependent, 89

G

Gas / Air bubbles, 27 grounding rings, 41

Η

Hazardous area Electrical connection, 43 Laws and directives, 10 Qualified personnel, 14 Horizontal Pipes, 27 Hotline, (Refer to Support request)

I

Inlet / outlet conditions, 25 Installation Horizontal Pipes, 27 in U-tube, 23 Indoor/outdoor, 23 Large pipes, 25 Location in system, 23 Pipes with free outlet, 24 Remote, 45 Safety instructions, 23 Vertical pipes, 27 Items supplied, 6

L

Laws and directives Disassembly, 10 Personel, 10 Liner Material, 18, 74 Protectors, 29

Μ

Mains supply, 43 Maintenance, 51 Manuals, 87 Material compatibility, 10 Measurement principle, 20 Mechanical load, 61

0

Operating pressure, 61

Ρ

Potential equalization, 40 Potting, 49 Pressure Compliance with Pressure Equipment Directive, 10 In relation to temperature, 72 Safety instructions, 23 Process connections, 60 Process fluid Conductivity, 73 Temperature, 62 Product label, 19 Protective conductor terminal, 44 Protective earth, 44

Q

Qualified personnel, 14

R

Repair, 51 Return procedure, 53

S

Safety, 9 Instrument safety standards, 10 Sensor installation, 23 Safety instructions Electrical connection, 43 Scope of delivery, 6 Sensor check, 55 Sensor orientation, 27 Service, 51, 88 Service and support Internet, 88 Specification label, 20 Support, 88 Support request, 88 Symbols, (Refer to warning symbols) System components, 17

Т

Technical data, 59 Technical support, 88 partner, 88 personal contact, 88 Temperature Ambient, 61 In relation to pressure, 72 Process fluid, 62 Test certificates, 9 Theory of operation, 20

V

Vertical Pipes, 27 Vibrations, 24, 61

W

Warning symbols, 9 Warranty, 8 Wire insulation, 44 Wiring, (See Electrical connection)